Share

Related pages

High Quality Images

China's Nuclear Fuel Cycle

(Updated 29 July 2014)

  • China is making major strides to become self-sufficient in most aspects of the fuel cycle.
  • Domestic uranium mining currently supplies less than a quarter of China's nuclear fuel needs. Exploration and plans for new mines have increased significantly since 2000, and state-owned enterprises are also acquiring uranium resources internationally.
  • China aims to produce one-third of its uranium domestically, obtain one-third through foreign equity in mines and joint ventures overseas, and to purchase one-third on the open market.
  • China's two major enrichment plants were built under agreements with Russia in the 1990s and, under a 2008 agreement, Russia is helping to build additional capacity and also supply low-enriched uranium to meet future needs.
  • China’s R&D in nuclear technologies is second to none in the world, particularly in high-temperature gas-cooled and molten salt-cooled reactors.

China has stated it intends to become self-sufficient not just in nuclear power plant capacity, but also in the production of fuel for those plants. However, the country still relies on foreign suppliers for all stages of the fuel cycle, from uranium mining through fabrication and reprocessing. As China rapidly increases the number of new reactors, it has also initiated a number of domestic projects, often in cooperation with foreign suppliers, to meet its nuclear fuel needs.

Uranium resources and mining

China National Nuclear Corporation (CNNC) is the only current supplier of domestic uranium. It also controls most of the fuel cycle in China. China General Nuclear Power (CGN) has responded energetically to this situation through its subsidiary China Guangdong Nuclear Uranium Resources Co Ltd (CGN-URC) as described below.

China now claims to be “a uranium-rich country” on the basis of some two million tonnes of uranium, though published known uranium resources of 221,500 tU (or 166,000 tU reasonably assured and inferred to $130/kg at 1/1/11) which were inadequate for the country's needs. New discoveries in the north and northwest in sandstones, and deep hydrothermal ones in southeast China have raised expectations. There is also potential in lignite, black shale and phosphates. As of 2012, 35% of resources were in sandstone deposits mainly in the north and northwest, 28% in vein/granite deposits in central and southeast China, 21% in volcanic deposits in the southeast, and 10% in black shale in the southeast. Most known resources are at less than 500m depth. 

Production of some 1500 t/yr supplies enough for about 7000 MWe, apart from new cores. By international standards, China's ores are low-grade and production has been inefficient. The nuclear power companies are not depending on the national goal of sourcing one-third of uranium domestically, and are ramping up international arrangements to obtain fuel.

Increasingly, uranium is imported from Kazakhstan, Uzbekistan, Canada, Namibia, Niger and Australia. In 2012 imports were 12,908 tU, and in 2013 China imported 18,968 tonnes of uranium for $2.37 billion from five countries (Kazakhstan, Uzbekistan, Australia, Namibia and Canada) according to China’s General Administration of Customs. Anticipated need in 2014, including new cores, is 6400 tU.

Operating uranium mines in China

Minea Province Type Nominal capacity
(tonnes U per year)
Started
Fuzhou Jiangxi Underground, mill 500 1966
Chongyi Jiangxi Underground, heap leach 300 1979
Yining Xinjiang In-situ leach (ISL) 500 1993
Lantian Shaanxi Underground, heap leach 100 1993
Benxi (& Ginglong) Liaoning Underground, heap leach 220 1996 & 2007
Shaoguan Guangdong Underground, heap leach 200 2008
Total*     1820  

* including new capacity at first three
The Fuzhou mine in the southeastern Jiangxi province is in a volcanic hydrothermal deposit, as is Qinglong/Ginglong. 
Xinjiang's Yili basin in the far west of China, in which the Yining (or Kujiltai) ISL mine sits, is contiguous with the Ili uranium province in Kazakhstan, though the geology is apparently different. The other mines are in granitic deposits. Source: Red Book 2011.

China Nuclear Uranium Corporation, a subsidiary of CNNC, operates these mines. Pilot testing is under way on the Shihongtan deposit in the Turpan-Hami basin of Xinjiang, and the western portion appears suitable for ISL. A uranium-molybdenum mine is being developed at Guyuan, Hebei province, in granites. Other uranium deposits with abundant reserves but with complex mining and milling technologies are the subject of pilot tests and feasibility studies, such as the Dongsheng and Erlian sandstone deposits in Inner Mongolia. The former, in the Ordos/Erdos Basin, has an estimated 30,000 tonnes of uranium in a palaeochannel system, the latter is unsuitable for ISL due to low permeability.

The Hengyang underground uranium mine is on stand-by. The mine, which started up in 1963, has a nominal production capacity of 500-1000 tU/yr.

CGN subsidiary China Guangdong Nuclear Uranium Resources Co Ltd (CGN-URC) was set up in 2006 to be responsible for CGN's fuel supply, and in particular to undertake uranium exploration and mining, uranium trade, and management of fuel processing for CGN. It is pursuing the second stage of a planned three-stage development, with diversification of supplies and integration of front-end services. A third stage will involve new technology as well as consolidation of its role as viable supplier. It aims to free up international trade and bring about better logistics. Early in 2012 CGN-URC changed its name to CGNPC-Nuclear Fuel Co Ltd (CGNPC-NFC) to reflect its wider interest in all front-end fuel cycle aspects, but this name change did not persist.

CGN-URC has been undertaking uranium exploration in Xinjiang Uygur autonomous region, and also in Guangdong, via CGN-URC Guangdong Uranium Ltd. In May 2011 CGN-URC announced that it was developing two 500 tU/yr mines on these deposits, to operate from 2013.

Mineral exploration

CNNC's Bureau of Geology and the Beijing Research Institute of Uranium Geology are the key organisations involved with a massive increase in exploration effort since 2000, focused on sandstone deposits amenable to ISL in the Xinjiang and Inner Mongolia regions, and the granite and volcanic metallogenetic belts in southern China, including the Xiangshen uranium orefield.

In northern China, the exploration is focused on previously discovered mineralisation spanning the Yili, Turpan-Hami, Junggar and Tarim basins of Xinjiang Autonomous Region, and the Erdos/Ordos, Erlian, Songliao, Badanjili and Bayingebi basins of Inner Mongolia. The Ordos basin itself covers over 250,000 sq. km of Shaanxui, Shanxi, Gansu and Inner Mongolia and contains major coal units as well as commercial gas reservoirs and some oil. It starts just north on Xi’an in Shaanxi province and extends nearly to Baotou near the Mongolian border. By 2012 this had become the premier uranium region of China, right across its north. In 2008 significant deposits were discovered in the Yili basin of Xinjiang, including J3, and then in the Ordos basin Nalinggou, Darong and (in 2012) Daying were discovered. Also in the Erlian basin the Bayanwula deposit, and the Qianjiadian deposit in the Songliao basins in the east of Inner Mongolia were identified. Bayanwula is a roll front deposit with biogenic origins.

CNNC Inner Mongolia Mining Industry LLC based in Baotou is responsible for overseeing natural uranium geological prospecting, scientific research and project management in the middle and western parts of Inner Mongolia. Its Mining Business Division is focused mainly evaluating the Nalinggou and Bayanwula projects by the end of 2015. The Division is also setting up regional headquarters in Inner Mongolia, Jiangxi, Guangdong and Xinjiang.

Some northern uranium mineralization is interbedded with coal deposits, giving rise to concerns about mining efficiently, and about the amount of radioactivity in coal as burned in some northern power stations. The uranium deposit in the Daying area of Inner Mongolia is possibly in this category.

In March 2013 CNNC signed an agreement with China Petroleum & Chemical Corp. (SINOPEC) to set up the joint venture of CNNC and SINOPEC Uranium Resources Co. Ltd to accelerate the exploration for uranium resources, starting with the Chaideng area of Inner Mongolia. The Chaideng prospecting region of Dongsheng Coal Field is in the northeast of the Ordos Basin.

The Dongsheng group of uranium deposits is located in south-central Inner Mongolia, about 100 km south of Baotou and on the northern edge of the Ordos Basin. Uranium ore bodies are mostly in area of 200 sq. km hosted by fluvial sandstones in the Zhiluo Formation as a regional redox front, and to a lesser degree within the Yan'an Formation, which has coal-bearing strata. Individual tabular and roll-front ore bodies are several tens to one hundred metres long, up to 20 m thick, and have average ore grades of 0.02 to 0.05%U. They plunge from 75 to 185 m deep, following the dip of the Zhiluo formation.

International uranium sources

With the prospective need to import much more uranium, China Nuclear International Uranium Corporation (SinoU) was set up by CNNC to acquire uranium resources internationally. It set up the Azelik mine in Niger and has agreed to buy a 10% share of Areva’s Imouraren project there for EUR 200 million. In January 2014 it bought a 25% stake in Paladin’s Langer Heinrich mine in Namibia for $190 million, entitling it to that share of output. It is investigating prospects in Kazakhstan (see below), Uzbekistan, Mongolia, Namibia, Algeria and Zimbabwe. Canada and South Africa are also seen as potential suppliers for SinoU.

Sinosteel Corporation holds minor equity in explorer PepinNini Minerals Ltd in Australia and has 60% of a joint venture with PepinNini to develop a uranium deposit in South Australia. Sinosteel is also involved with exploration on Quebec and Krygystan.

Chinese equity in uranium mines in other countries

Company Country Mine Equity % Start production with China equity
SinoU Niger Azelik 37.2 + 24.8 ZXJOY 2010
  Niger Imouraren 10 pending 2016
  Namibia Langer Heinrich 25 2014
  Kazakhstan Zhalpak 49? 2014?
CGN-URC Namibia Husab 90 2015
  Kazakhstan Irkol & Semizbai 49 2008, 2009
  Uzbekistan Boztau black shales 50 2015?

CGN subsidiary China Guangdong Nuclear Uranium Resources Co Ltd (CGN-URC) set up in 2006 has uranium imports and investment in overseas sources of supply as part of its remit. It has been active in securing foreign supplies of uranium.

 In September 2007, two agreements were signed in Beijing between Kazatomprom and CGNPC on Chinese participation in Kazakh uranium mining joint ventures and on reciprocal Kazatomprom investment in China's nuclear power industry. These came in the context of an earlier strategic cooperation agreement and one on uranium supply and fuel fabrication. This is a major strategic arrangement for both companies, with Kazatomprom to become a major uranium and nuclear fuel supplier to CGN. A framework strategic cooperation agreement was then signed with CNNC. A CGN subsidiary, Sino-Kazakhstan Uranium Resources Investment Co, has invested in two Kazakh uranium mines: Irkol and Semizbai, while CNNC is investing in another: Zhalpak. 

In November 2010 CGNPC signed a long-term contract with Kazatomprom for 24,200 tonnes of uranium through to 2020. In May 2014 CGN contracted with Uzbekistan’s Navoi Mining & Metallurgy for $800 million worth of uranium to 2021.

In November 2007 CGNPC signed an agreement with Areva to take a 24.5% equity stake in its UraMin subsidiary (now Areva Resources Southern Africa), and for China to take half the output, but this did not proceed.* 

*Uramin was proposing mines in Namibia, South Africa and Central African Republic. In October 2008, Areva announced that a further 24.5% would be taken up by other 'Chinese sovereign funds', though it would remain the operator. China also agreed to buy more than half of the uranium from UraMin over the lifetime of the three deposits – the total quantity involved was to be over 40,000 tU to 2022. However, production from those mines, Trekkopje, Ryst Kuil and Bakouma respectively has not yet materialized, and at the end of 2009 Areva’s reported 100% equity in the company, with no Chinese equity.

CGN-URC has embarked upon a 50-50 joint venture with Uzbekistan's Goskomgeo focused on black shales the Sino-Uz Uranium Resources Co Ltd (or Uz-China Uran LLC), in particular the Boztau uranium exploration project in the Central Kyzylkum desert of the Navoi region of Uzbekistan. Over 2011-13 CGN-URC was to develop technology for the separate production of uranium and vanadium from these black shale deposits with a view to commencing production from 2014.  

In 2012 CGN-URC, through a Hong Kong subsidiary Taurus Minerals (60% CGN, 40% China-Africa Development Fund), took over Kalahari Minerals PLC and then Extract Resources Ltd, giving it ownership of the massive Husab project in Namibia, with 137,700 tU measured and indicated resources and a further 50,000 tU inferred resources at Rossing South. The cost was about $2.2 billion. Swakop Uranium is the development company owned by Taurus, except for a 10% share held by the government’s Epangelo Minerals. Mine development commenced in April 2013, production is expected in 2015.

In mid-2010, CGNPC signed a framework agreement with Cameco under which the two companies would negotiate long-term uranium purchase agreements and potential joint development of uranium resources. In November the Cameco sale of 11,200 tonnes of uranium through to 2025 was confirmed. Then, in November 2010, CGNPC signed a $3.5 billion, ten-year contract with Areva for supply of 20,000 tonnes of uranium.

In 2010 CNNC contracted with Cameco for 8865 tU through to 2025.

In March 2009, CNNC International, a 70% subsidiary of CNNC Overseas Uranium Holding Ltd and through it, of SinoU, agreed on a $25 million takeover of Western Prospector Group Ltd which controls the Gurvanbulag deposit in Mongolia, very close to the Chinese border. At the end of June CNNC held 69% of Western Prospector and acquired the remainder in August 2009. Western Prospector and its Mongolian subsidiary, Emeelt Mines, undertook a definitive feasibility study which showed that the project was barely economic, on the basis of 6900 tU reserves averaging 0.137% U. With radiometric sorting the head grade would be 0.152%U and the mine could produce 700 tU/yr for nine years. Mine development cost would be about $280 million. This whole CNNC stake in Mongolia appears to be on hold and its future in doubt.

CNNC has been searching for uranium in Jordan.

Alternative sources of uranium

In 2007 CNNC commissioned Sparton Resources of Canada with the Beijing No.5 Testing Institute to undertake advanced trials on leaching uranium from coal ash out of the Xiaolongtang power station in Yunnan province, in the southwest. The Lincang ash contains 160-180 ppm U - above the cut-off level for some uranium mines. The power station ash heap contains over 1700 tU, with annual arisings of 106 tU. Two other nearby power stations burn lignite from the same mine. A joint venture company Yunnan Sparton New Environ Tech Consulting Co. Ltd. (SNET), 60% owned by Sparton, has been set up to operate the secondary recovery programs. No results were evident by mid 2011.

Conversion

A conversion plant at Lanzhou of about 1000 tU/yr started operation in 1980 but may now be closed. Another conversion plant at Diwopu, Jiuquan, near Yumen in northwest Gansu province, is about 500 tU/yr, though Areva quotes 2000 t/yr for both plants in 2006.

Further conversion capacity was planned with the new China Nuclear Fuel Element Co (CNFEC) plant at Daying Industrial Park in Heshan city, Guangdong province. It was quoted at 14,000 t/yr by 2020. However plans for this location were cancelled in July 2013.

Enrichment and enriched uranium imports

In 2010 China needed 3600 tU and 2.5 million SWU of enrichment. In 2020 demand is expected to be 15,000 tU (natural) and almost 9 million SWU. All enrichment capacity is inland, in Shaanxi, Gansu and Sichuan provinces.

A Russian centrifuge enrichment plant at Hanzhun, SE Shaanxi province, was set up under 1992, 1993 and 1996 agreements between Minatom/Tenex and CNEIC covering a total 1.5 million SWU/yr capacity in hina at two sites. The first two modules at Hanzhun came into operation in 1997-2000, giving 0.5 million SWU/yr as phases 1 & 2 of the agreements. In November 2007, Tenex undertook to build a further 0.5 million SWU/yr of capacity at Hanzhun, completing the 1990s agreements in relation to the Hanzhun plant. This was commissioned ahead of schedule in mid 2011.

The full agreement for this $1 billion plant was signed in May 2008 between Tenex (Techsnabexport) and China Nuclear Energy Industry Corporation. The site, or at least two phases of it, is under IAEA safeguards. Up to 2001 China was a major customer for Russian 6th generation centrifuges, and more of these were supplied in 2009-10 for Hanzhun, under phase 4 of the agreement.

The Lanzhou enrichment plant in Gansu province to the west started in 1964 for military use and operated commercially 1980 to 1997 using Soviet-era diffusion technology. A Russian centrifuge plant of 500,000 SWU/yr started operation there in 2001 as phase 3 of the above agreements and it is designed to replace the diffusion capacity.

Another and larger diffusion enrichment plant operated at Heping, Sichuan province, from 1975 to 1989 for military purposes. It was indigenously built, about 200-250,000 SWU/yr capacity, but is likely no longer operational.

China is also developing its own centrifuge technology at Lanzhou, and the first domestically-produced centrifuge was commissioned there in February 2013. 

Further enrichment capacity was planned with the new China Nuclear Fuel Element Co (CNFEC) plant at Daying Industrial Park in Heshan city, Guangdong province. It was quoted at 7000 t/yr by 2020. However plans for this location were cancelled in July 2013.

CGN-URC contracts fuel fabrication services from CNEIC on behalf of its operational power generation companies.

Enriched uranium

Much of the enriched uranium for China's reactors comes from outside the country.

A contract with Urenco supplies 30% of the enrichment for Daya Bay from Europe.

Under the May 2008 enrichment agreement Tenex is to supply (from Russia) 6 million SWU as low-enriched uranium product from 2010 to 2021 for the first four AP1000 reactors, this apparently being related to completion of the Hanzhun enrichment plant. It is expected to involve $5 to 7 billion of LEU and possibly more. Enriched uranium for the first four AP1000 reactors is being supplied by Tenex from Russia, under the 2008 agreement.

Fuel fabrication

CNNC is responsible for fuel fabrication, utilising some technology transferred from Areva, Westinghouse and TVEL. Fuel fabrication plants are inland, in Sichuan and Inner Mongolia. Demand in 2013 was about 1300 tU in fabricated fuel, and by 2020 this will rise to about 1800 tU – though precise levels fluctuate due to demand for initial core loads in new reactors.

CNNC's main PWR fuel fabrication plant at Yibin, Sichuan province, was set up in 1982 (though based on a 1965 military plant) to supply Qinshan 1. It is operated by CNNC subsidiary China Jianzhong Nuclear Fuel (JNF), with its subsidiary China Nuclear Fuel South, and by October 2008 was producing fuel assemblies with 400 tU/yr. It reached 800 tU/yr of PWR fuel and 100 tU/yr VVER fuel* by the end of 2013 and plans indicate at least 1000 tU/yr by 2020. It has started producing the locally-designed CF3 fuel assemblies, with the first loaded in Qinshan II-2 CNP-600 in mid-2014. It has certified Kazakhstan's Ulba Metallurgical Plant as a source of pellets.

* VVER fuel fabrication at Yibin began in 2009, using technology transferred from TVEL under the fuel supply contract for Tianwan. (First core and three reloads for Tianwan 1&2 were from Novosibirsk Chemical Concentrate Plant in Russia – 638 fuel assemblies, under the main contract.) By August 2010, Yibin had produced 54 VVER-1000 fuel assemblies which were being loaded into the Tianwan 1 & 2 units. In November 2010, TVEL contracted with Jiangsu Nuclear Power Corporation (JNPC) and the China Nuclear Energy Industry Corporation (CNEIC) to supply six fuel reloads for Tianwan 1, and the technology for fuel to be produced at Yibin thereafter, for about US$ 500 million. TVEL certified the plant to manufacture the new TVS-2M fuel for Tianwan in April 2014. The two units run on 18-month refueling cycles.

CNNC set up a second civil fuel fabrication plant run by China North Nuclear Fuel Co Ltd (CNNFC) at Baotou, Inner Mongolia, in 1998, based on a military plant there dating from 1956. This fabricates fuel assemblies for Qinshan's CANDU PHWRs (200 tU/yr) and 200 tU/yr for PWRs. Areva has assisted the plant to qualify for production of modern fuel design. In 2012 the plant became the Northern Branch of China Nuclear Fuel Element Co Ltd., or simply China Nuclear Northern, though the original company name was being used in 2013.

In 2008 SNPTC agreed with both fuel companies (Jianzhong and Northern) to set up CNNC Baotou Nuclear Fuel Co Ltd to make fuel assemblies for China's AP1000 reactors (first cores and some re-loads of the initial units will supplied by Westinghouse). In January 2011 a $35 million contract was signed with Westinghouse "to design, manufacture and install fuel fabrication equipment that will enable China to manufacture fuel" for AP1000 units. The plant at Baotou is producing 400 tU/yr from 2013 but 1000 tU/yr is planned by 2020.

A new fuel production line at Baotou to make the 9% enriched fuel spheres for the Shidaowan HTR-PM high temperature reactors in Shandong province was inaugurated in March 2013 and is expected to start production in 2015, with a capacity of 300,000 fuel pebbles per year. NNSA licensed the CNY 230 million project in February 2013. It is based on a trial production line developed by INET at Tsinghua University to produce 100,000 spherical fuel elements per year, and INET is involved in the new plant. (In March 2011 a contract was signed with SGL Group in Germany for supply of 500,000 machined graphite spheres for HTR-PM fuel load by the end of 2013.) 

In December 2010 it was reported that CNNC planned to combine the fuel fabrication businesses of China Nuclear Northern and Jianzhong Nuclear into a new company.

In May 2013 CNNC and CGN announced that they would build a new China Nuclear Fuel Element Co (CNFEC) plant at Daying Industrial Park in Heshan and Jiangmen city, Guangdong province, and it would have 1000 tU/yr capacity by 2020. Construction was due to start in 2013, but in July the plan for this location was abruptly cancelled. The CNY 45 billion Industry park was also to involve a conversion plant and an enrichment plant. 

In order meet its goal of being self-sufficient in nuclear fuel supply, additional fuel production capacity will be required. However, the fuel for Taishan being supplied to CGN by Areva, comprising the two first cores and 17 reloads, will be fabricated in France. Also the fuel for Tianwan 3&4 is being supplied by Russia’s TVEL until 2025, along with help to equip the Yibin plant to produce from then, under a $1 billion contract with Jiangsu Nuclear Power Corporation (JNPC) and the China Nuclear Energy Industry Corporation (CNEIC).*

* TVEL's TVS-2M fuel offers the possibility of an extended 18-month operating cycle and is used in Russia's Balakovo and Rostov power plants. After pilot operations using six TVS-2M assemblies at Tianwan 1, the design was licensed in China, and Tianwan 1&2 are due to be converted to 18-month operating cycles from 2014. Units 3&4 are to run on the fuel from their first core loadings onwards.

CGN-URC contracts fuel fabrication services from CNFSC and CNFNC, and retails these to its operational power generation companies.

CNNC and Areva have set up a 50-50 joint venture to produce and market zirconium alloy tubes for nuclear fuel assemblies. The joint venture, CNNC Areva Shanghai Tubing Co. (CAST), started production at the end of 2012, and was expected to ramp up from 300 km of tubes per year to 1500 km in 2015, supplying both Yibin and Baotou fuel fabrication plants. A further agreement in 2013 may extend this JV to producing the zircaloy itself, at 600 t/yr by 2017.

Fuel cycles

A standard 18-month fuel cycle is the normal routine for Daya Bay, Ling Ao, and early M310 to CPR-1000 reactors. This has average burn-up of 43 GWd/t, with maximum of 50 GWd/t. An Advanced Fuel Management cycle using fuel with gadolinium burnable poison is implemented at Ling Ao phase II, Hongyanhe, Ningde, and Yangjiang, giving average 50 GWd/t and maximum 57 GWd/t through to CPR-1000+.

Moving to recycling fuel in PWRs is the next step, though with limited advantage compared with longer-term goal of using fast neutron reactors with MOX and advanced reprocessing. This will be electrometallurgical reprocessing (pyroprocessing) coupled with some sort of partitioning. 

Reprocessing, recycling

Most of the civil back-end facilities are in Gansu province.

CNNC Ruineng Technology Co Ltd was set up by CNNC in November 2011 to industrialise used fuel reprocessing technology and mixed-oxide (MOX) fuel production to close the fuel cycle. It will also be responsible for storage and management of used fuel. When 80 GWe is operating, about 2000 t used fuel will be discharged each year.

A pilot reprocessing plant using the Purex process was constructed from 2006 at Lanzhou Nuclear Fuel Complex in Gansu province, and completed hot commissioning in 2010. It will reprocess about 50 tonnes of used fuel over 2013-15. An initial commercial reprocessing plant based on this, of 400 t/yr, is planned to operate about 2017. A large (800-1000 t/yr) commercial reprocessing plant based on indigenous advanced technology was planned to follow and begin operation about 2020, but plans for this are not firm and the 800 t/yr Areva project could displace it, despite being older technology. A second 800 t/yr plant will follow.

In November 2007, Areva and CNNC signed an agreement to assess the feasibility of setting up a reprocessing plant for used fuel and a mixed-oxide (MOX) fuel fabrication plant in China, representing an investment of €15 billion. The 800 t/yr reprocessing plant would apparently be in Jinta county, north of Jiayuguan in Gansu province, employing proven French technology and operated by Areva. Design, construction and commissioning was expected to take ten years from 2010. In November 2010, an industrial agreement on this was signed, which Areva said was "the final step towards a commercial contract" for the project. In April 2013 a further agreement was signed with Areva, setting out the technical specifications for the 800 t/yr plant. Then in March 2014 another agreement on the matter was signed, to continue planning the project and completing a business case for it. The target date for operation is 2025.

The China Institute of Atomic Energy (CIAE) envisages an industrial reprocessing plant of about 1000 t/yr in operation from about 2021.

Technology for recycling uranium recovered from used nuclear fuel from Chinese PWRs for use in the Qinshan Phase III Candu units is being developed (see section below on Recycled uranium in PHWRs; thorium in PHWRs).

Mixed-oxide (MOX) fuel

A small experimental MOX plant was built in 2008, giving experience at 500 kg/yr.

In October 2010, GDF Suez Belgian subsidiary Tractabel, with Belgonucleaire and the nuclear research centre SCK-CEN signed an agreement with CNNC to build a pilot mixed oxide (MOX) fuel fabrication plant in China. Belgium has experience in MOX fuel development and production dating back to 1960, including 20 years of industrial MOX production at Belgonucleaire's 35 tonne per year Dessel plant from 1986 to 2006 (see section on Fuel cycle in the information page on Nuclear Power in Belgium). MOX has been in use in Belgium's nuclear power plants since 1995.

Fuel for the BN-800 reactors (referred to as Chinese Demonstration Fast Reactors – see section below on Fast neutron reactors) planned to be built at Sanming will be MOX pellets, initially made in Russia.

CIAE shows two 40 t/yr MOX fabrication plants in operation from about 2018. A 50 t/yr MOX reprocessing plant is under consideration for operation by 2030.

Waste management

When China started to develop nuclear power, a closed fuel cycle strategy was also formulated and declared at an International Atomic Energy Agency conference in 1987. The used fuel activities involve: at-reactor storage; away-from-reactor storage; and reprocessing. CNNC has drafted a state regulation on civil spent fuel treatment as the basis for a long-term government program.  There is a levy of CNY 2.6 cents/kWh on used fuel, to pay for its management, reprocessing, and the eventual disposal of HLW.

Based on expected installed capacity of 20 GWe by 2010 and 40 GWe by 2020, the annual used fuel arisings will amount to about 600 tonnes in 2010 and 1,000 tonnes in 2020, the cumulative arisings increasing to about 3,800 tonnes and 12,300 tonnes, respectively. The two Qinshan Phase III CANDU units, with lower burn-up, will discharge 176 tonnes of used fuel annually.

Storage and disposal

A centralised used fuel storage facility has been built at Lanzhou Nuclear Fuel Complex, 25 km northeast of Lanzhou in central Gansu province. The initial stage of that project has a storage capacity of 550 tonnes and could be doubled. However, most used fuel is stored at reactor sites, in ponds. It or an intermediate-level waste repository there is 10-20 m underground. The only dry storage operating is at Qinshan, and this is being expanded.

Some used fuel – about 100 fuel assemblies per year – is transported 3700 km by road to Gansu province for storage, and it is planned to increase this traffic substantially by 2016.

CGN plans a demonstration program of regional storage centres close to its power plants. These will be dry storage, and will send used fuel by train to the eventual reprocessing plant in the west of the country.

Separated high-level wastes will be vitrified, encapsulated and put into a geological repository some 500 metres deep. Site selection and evaluation has been under way since 1986 and is focused on three candidate locations in the Beishan area of Gansu province and will be completed by 2020. All are in granite. An underground research laboratory will then be built 2015-20 and operate for 20 years. The third step is to construct the final repository from 2040 and to carry out demonstration disposal. Acceptance of high-level wastes into a national repository is anticipated from 2050. All this is taking place under the 2006 R&D Guidelines for Geological Disposal jointly published by China Atomic Energy Authority, Ministry of Science &Technology, and Ministry of Environmental Protection.

In mid-2014 construction started on a vitrification plant for HLW in Sichuan, where 800 m3 of liquid waste was reported to be stored already. It will use German technology and plant from Karlsruhe Institute of Technology. It is entirely for military wastes, but the technology may be usable later for civil wastes.

Industrial-scale disposal of low- and intermediate-level wastes is at two sites, near Yumen in northwest Gansu province, and at the Beilong repository in Guangdong province, near the Daya Bay nuclear plant. A third site in southwest China is under construction. These are the first three of five planned regional LILW disposal facilities.

The regulatory authorities of high-level radioactive waste disposal projects are Ministry of Environmental Protection (MEP) and the National Nuclear Safety Administration (NNSA). The China Atomic Energy Agency (CAEA) is in charge of the project control and financial management. CNNC deals with implementation, and four CNNC subsidiaries are key players: Beijing Research Institute of Uranium Geology (BRIUG) handles site investigation and evaluation, engineered barrier study and performance analyses, with the China Institute of Atomic Energy (CIAE) undertaking radionuclide migration studies. The China Institute for Radiation Protection (CIRP) is responsible for safety assessment, and the China Nuclear Power Engineering Company (CNPE) works on engineering design. 

Industrial parks

Two significant industrial parks focused on nuclear power were announced in 2010 and are being set up.

The first is a nuclear technology base near Nanjing in Jiangsu province, known as the Nanjing Jiangning Binjiang Development Zone, and part of the China Nuclear Binjiang Production Base which includes a research facility for nuclear-grade concrete. China Huaxing Nuclear Construction Company (HXCC) will build this on the banks of the Yangtze River about 300 km west of Shanghai, in three phases to 2015. Nanjing is a transport hub, and the overall 51 square kilometre development zone will be served by a new river port including a bulk cargo terminal and 12 deep-water piers.

The zone will feature as its centrepiece a $146 million factory for pre-assembled structural and equipment modules for CPR-1000 and Westinghouse AP1000 reactors. The modules, weighing up to nearly 1000 tonnes each in the case of AP1000, can then be taken by barge to construction sites. Currently AP1000 modules are made by Shandong Nuclear Power Equipment Manufacturing Co. which has the capacity to support construction of two reactors per year. HXCC is the main civil engineering contractor for China Guangdong Group.

The second is the China Nuclear Power City, launched by CNNC at Haiyan, Zhejiang province, on the Yangtze delta about 120 km southwest of Shanghai and close to the cities of Hangzhou, Suzhou and Ningbo. As well as having the nuclear power plants in the Qinshan complex nearby, Haiyan hosts the headquarters of 18 leading Chinese nuclear equipment suppliers and branch offices of all the major Chinese nuclear design institutes and construction companies. The new China Nuclear Power City will cover 130 square kilometers and has a 10-year budget of $175 billion, according to reports. It is expected to have four main areas of work: development of the nuclear power equipment manufacturing industry; nuclear training and education; applied nuclear science industries (medical, agricultural, radiation detection and tracing); and promotion of the nuclear industry.

The Haiyan Nuclear Power City is entitled to all the preferential benefits granted to national economic and technological zones and national hi-tech industrial zones. Enterprises in the industrial park will enjoy priority for bidding quota, bidding training, qualification guidance and specific purchasing with CNNC. The concept is based on the French equivalent in the Burgundy area, and French suppliers will be involved at Haiyan, as will CGNPC.

As well as these major industry centres there is a factory for AP1000 modules set up at Haiyang, on the coast, and another in central Hubei province to support inland AP1000 projects and later the CAP-1400 derivatives.

A further centre, the Taishan Clean Energy (Nuclear Power) Equipment Industrial Park, opened in February 2010 in the Pearl River Delta region of Guangdong province, and is expected to become a centre for nuclear power equipment manufacturing, initially supplying hardware and services to nearby nuclear power projects. The planned development will eventually cover about 45 sq km and include design, R&D and technical services. The initial 3.1 sq km phase of the park costing CNY 2 billion will be followed by second 2.4 sq km phase. Targets call for manufacturers at the park to have 45% of the nuclear equipment market in Guangdong and produce goods worth CNY 22 billion by 2020 while playing a leading role in R&D and maintenance of nuclear power equipment. The park also plans to produce CNY 20 billion in goods not related to the power industry by 2020.

In May 2013 CGN and CNNC announced that their new China Nuclear Fuel Element Co (CNFEC) joint venture would build a CNY 45 billion ($7.33 billion) complex in Daying Industrial Park at Zishan town in Heshan and Jiangmen city, Guangdong province. It was to be established during the 12th Five-Year Plan and be fully operational by 2020. However, in July 2013 the plan was abruptly cancelled. The 200 ha park was to involve 1000 tU/yr fuel fabrication as well as a conversion plant (14,000 t/yr) and an enrichment plant, close to CGN’s Taishan power plant.

Research & development

Initial Chinese nuclear R&D was military. A water-cooled graphite-moderated production reactor for military plutonium started operating in 1966, located at the Jiuquan Atomic Energy Complex some 100 km northwest of the city of Jiuquan in Gansu province, north-central China. The area is mainly desert and very remote. In the early 1980s it was decided to convert it to dual-use, and plutonium production evidently ceased in 1984. Reprocessing was on site. Another, larger, plutonium production reactor with associated facilities was in a steep valley at Guangyuan in Sichuan province, about 1000 km south. It started up about 1975 and produced the major part of China's military plutonium through to 1991.

In November 2013 China National Nuclear Power Company, Ltd. (CNNP) joined two of the nuclear-related research programs run by the Electric Power Research Institute (EPRI) in the USA. These are the Nuclear Maintenance Application Center (NAMC), which develops technologies, systems, and guides to drive improvements in nuclear plant maintenance activities; and the Nondestructive Evaluation (NDE) program, which develops technologies and procedures to quickly, accurately, and cost-effectively inspect and characterize nuclear component condition and inform strategic decisions on whether and when to replace, repair, or continue operation. CNNP said that it “will expand its engagement with EPRI soon to become a full member in all of its nuclear research programs.” Earlier in 2013 EPRI had signed agreements with CGN and SNERDI.

Research Reactors

Apart from military facilities, China has about 19 operational research reactors, and a report by the Ministry of Environmental Protection (MEP) in June 2013 asserted their good condition and safety, along with that of the country’s power reactors.

The 125 MW light water High-Flux Engineering Test Reactor (HFETR) has been run by the (Southwest) Leshan Nuclear Power Institute of China at Jiajiang, Sichuan province, since 1979. Early in 2007, this was converted to use low-enriched uranium, with the help of the US National Nuclear Security Administration (NNSA). At least one of the five research reactors in Sichuan province was near the epicentre of the May 2008 earthquake.

The China Institute of Atomic Energy (CIEA) near Beijing undertakes fundamental research on nuclear science and technology and is the leading body in relation to fast neutron reactors, as well as other research reactors. Its 15 MWt HWRR-II heavy water research reactor started up in 1958 and was shut down at the end of 2007. An updated version of this was supplied to Algeria and has operated since 1992.

CIEA built the new 60 MWt China Advanced Research Reactor (CARR), a sophisticated and versatile light water tank type unit with heavy water reflector which started up in May 2010, reaching full power in March 2011, and it also built the 65 MW China Experimental Fast Reactor (CEFR) which started up in July 2010. (see subsection below on Fast neutron reactors). 

In October 2010, the Belgian nuclear research centre SCK-CEN signed an agreement with the China Academy of Sciences to collaborate on the Belgian Myrrha projectb, which China sees as a way forward in treating nuclear wastes.

Reactor and fuel cycle development 

In 2008, SNPTC and Tsinghua University set up the State Research Centre for Nuclear Power Technology, focused on large-scale advanced PWR technology and to accelerate China's independent development of third-generation nuclear power.

A 200 MWt NHR-200 integral PWR design for heat and desalination has been developed by Tsinghua University's Institute of Nuclear Energy Technology (INET) near Beijing. It is developed from the 5 MW NHR-5 prototype which started up in 1989.

The NDRC is strongly supporting R&D on advanced fuel cycles, which will more effectively utilise uranium, and possibly also use thorium. The main research organisations are INET at Tsinghua University, China Institute of Atomic Energy (CIEA), also near Beijng, and the Nuclear Power Institute of China (NPIC) at Chengdu, which is the main body focused on the PHWR technology and fuel cycles. INET has been looking at a wide range of fuel cycle options including thorium, especially for the Qinshan Phase III PHWR units. NPIC has been looking at use of reprocessed uranium in Qinshan's PHWR reactors. CIAE is mainly involved with fast reactor R&D. China's R&D on fast neutron reactors started in 1964.

A report from NEA says that in Jiangxi a CNEC affiliate, Nuclear Construction Clean Energy Co. Ltd, has signed an agreement with Ruijin government to set up Jiangxi Ruijin Nuclear Power Preparatory Office. According to the agreement, Nuclear Construction Clean Energy Co would look for a site to construct a high temperature gas cooled reactor.

Thorium molten salt reactor program

The China Academy of Sciences (CAS) in January 2011 launched a program of R&D on thorium-breeding molten salt reactors (Th-MSR or TMSR), otherwise known as liquid fluoride thorium reactors (LFTRs), claiming to have the world's largest national effort on these and hoping to obtain full intellectual property rights on the technology. The unit they are building is said to be similar to the 7 MWt Oak Ridge test MSR which ran 1965-69 with U-235 then U-233 fuels. The timeline for full commercialisation of TMSR technology was originally 25 years, but is reported to have been dramatically shortened, which may be reflected in increased funding.

The TMSR Research Centre has a 5 MWe MSR prototype under construction at Shanghai Institute of Nuclear Applied Physics (SINAP, under the Academy) with 2015 target for operation. A 2MWe accelerator-driven sub-critical prototype is also mentioned.

SINAP has two streams of MSR development – solid fuel (TRISO in pebbles or prisms/blocks) with once-through fuel cycle, and liquid fuel (dissolved in FLiBe coolant) with reprocessing and recycle.

  • The TMSR-SF stream has only partial utilization of thorium, relying on some breeding as with U-238, and needing fissile uranium input as well. SINAP aims at a 2 MW pilot plant by about 2015, and a 100 MWt demonstration pebble bed plant with open fuel cycle* by about 2025.
  • The TMSR-LF stream claims full closed Th-U fuel cycle with breeding of U-233 and much better sustainability but greater technical difficulty. SINAP aims for a 10 MWt pilot plant by 2025 and a 100 MWt demonstration plant by 2035.
  • A TMSFR-LF fast reactor optimized for burning minor actinides is to follow.

* TMSR SF-1 with 11,043 fuel pebbles 60mm diameter and 432 graphite pebbles, in 1.85 m high active core. The 100 MWt, 45 MWe demonstration reactor will use 30 mm fuel pebbles with 15% enriched uranium (470 kg) and FLiBe coolant in a core 1.9 m high, achieving 700°C. TRISO particles will be with both low-enriched uranium and thorium, separately.

SINAP sees molten salt fuel being superior to the TRISO fuel in effectively unlimited burnup, less waste, and lower fabricating cost, but achieving lower temperatures (600°C+) than the TRISO fuel reactors (1200°C+). Near-term goals include preparing nuclear-grade ThF4 and ThO2 and testing them in a MSR. The US Department of Energy (especially Oak Ridge NL) is collaborating with the Academy on the program, which had a start-up budget of $350 million.

However, the primary reason that American researchers and the China Academy of Sciences/ SINAP are working on solid fuel, salt-cooled reactor technology is that it is a realistic first step. The technical difficulty of using molten salts is significantly lower when they do not have the very high activity levels associated with them bearing the dissolved fuels and wastes. The experience gained with component design, operation, and maintenance with clean salts makes it much easier then to move on and consider the use of liquid fuels, while gaining several key advantages from the ability to operate reactors at low pressure and deliver higher temperatures.

Recycled uranium in PHWRs; thorium in PHWRs 

Early in 2008, CNNC subsidiary the Nuclear Power Institute of China (NPIC) signed an agreement with Atomic Energy of Canada Ltd (AECL) to undertake research on advanced fuel cycle technologies such as recycling recovered uranium from used PWR fuel and Generation IV nuclear energy systems. Initially this seemed to include DUPIC, the direct use of used PWR fuel In Candu reactors, the main work on which so far has been in South Korea. This blossomed into a strategic agreement among AECL, the Third Qinshan Nuclear Power Company (TQNPC), China North Nuclear Fuel Corporation and NPIC in November 2008.

The four partners are jointly developing technology for recycling uranium recovered from used nuclear fuel from other Chinese reactors (PWRs) with up to 1.6% fissile content for use in the Qinshan Phase III Candu units. The first commercial demonstration of this was in unit 1 of Qinshan Phase III, using 12 fuel bundles with recycled uranium (RU/ RepU) blended with depleted uranium (DU) to give natural uranium equivalent (NUE), similar to normal Candu fuel. It behaved the same as natural uranium fuel. Subject to supply from reprocessing plants, a full core of NUE was envisaged from 2012. Purchase of RU and DU, design and safety analysis, modification of fuel fabrication line, and licence application were planned by mid 2013. Full core implementation in both Candu reactors is expected by 2014.

In August 2012 a follow-on agreement among the parties (Candu Energy having taken over from AECL) focused on undertaking a detailed conceptual design of the Advanced Fuel Candu Reactor (AFCR), which is described as "a further evolution of the successful Candu 6 and Generation III Enhanced Candu 6 (EC6), optimized for use of recycled uranium and thorium fuel." At the completion of the agreement in 2014, the parties “expect to have the basis of a pre-project agreement for two AFCR units in China, including site allocation and the definition of the licensing basis."

In July 2014 the international cooperation escalated, and Candu Energy’s parent company, SNC-Lavalin, signed an agreement with TQNPC and China North’s parent company CNNC to jointly develop and pursue power generation, mining and metallurgy and nuclear-related environmental protection projects. Canadian government and NEA representatives attended. Under this agreement, SNC-Lavalin will work with CNNC to develop reactors using Advanced Fuel CANDU (AFCR) technology in China, “using both recycled uranium- and thorium-based fuels to deliver high-performing reactors with strong environmental benefits.”

The July 2014 agreement also provides a framework for collaboration between SNC-Lavalin and CNNC on uranium mining projects in China, “and the pursuit of international project opportunities in various high-growth sectors and markets.”

China Nuclear Fuel Cycle Vision 
(Access high resolution version of this graphic)

Phase one of the earlier AECL agreement was a joint feasibility study to examine the economic feasibility of utilizing thorium in the Qinshan Phase III PHWRs. (Geologically, China is better endowed with thorium than uranium.) This involved demonstration use of eight thorium oxide fuel pins in the middle of a Canflex fuel bundle with low-enriched uranium.

In July 2009, a second phase agreement was signed among these four parties to jointly develop and demonstrate the use of thorium fuel and to study the commercial and technical feasibility of its full-scale use in Candu units. This was supported in December 2009 by an expert panel appointed by CNNC and comprising representatives from China’s leading nuclear academic, government, industry and R&D organizations. The panel also unanimously recommended that China consider building two new Candu units to take advantage of the design's unique capabilities in utilizing alternative fuels.

HTR demonstration: HTR-10

A 10 MWt high-temperature gas-cooled demonstration reactor (HTR-10), having fuel particles compacted with graphite moderator into 60mm diameter spherical balls (pebble bed) was commissioned in 2000 by the Institute of Nuclear Energy Technology (INET) at Tsinghua University near Beijing. It reached full power in 2003 and has an outlet temperature of 700-950°C for the helium coolant and may be used as a source of process heat for heavy oil recovery or coal gasification. It is similar to the South African PBMR (pebble bed modular reactor) intended for electricity generation.

In 2004, the reactor was subject to an extreme test of its safety when the helium circulator was deliberately shut off without the reactor being shut down. The temperature increased steadily, but the physics of the fuel meant that the reaction progressively diminished and eventually died away over three hours. At this stage a balance between decay heat in the core and heat dissipation through the steel reactor wall was achieved, the temperature never exceeded 1600°C, and there was no fuel failure. This was one of six safety demonstration tests conducted then.

Initially the HTR-10 has been coupled to a steam turbine power generation unit, but second phase plans are for it to operate at 950°C and drive a gas turbine, as well as enabling R&D in heat application technologies. This phase will involve an international partnership with Korea Atomic Energy Research Institute (KAERI), focused particularly on hydrogen production.

Commercial HTRs: Shidaowan HTR-PM

A key R&D project is the demonstration Shidaowan HTR-PM of 210 MWe (two reactor modules, each of 250 MWt) which is being built at Shidaowan in Shandong province, driving a single steam turbine at about 40% thermal efficiency. The size was reduced to 250 MWt from earlier 458 MWt modules in order to retain the same core configuration as the prototype HTR-10 and avoid moving to an annular design like South Africa's PBMR.

China Huaneng Group, one of China's major generators, is the lead organization in the consortium with China Nuclear Engineering & Construction Group (CNEC) and Tsinghua University's INET, which is the R&D leader. Chinergy Co. is the main contractor for the nuclear island. Projected cost is US$ 430 million, with the aim for later units being US$ 1500/kWe. The licensing process is under way with NNSA, the EPC contract was let in October 2008 and construction started in December 2012, with completion expected in 2017. The engineering of the key structures, systems, and components is based on Chinese capabilities, though they include completely new technical features.

The HTR-PM will pave the way for a planned multi-module commercial plant at the same site in Weihai city – possibly total 3800 MWe – also with steam cycle. INET is in charge of R&D, and is aiming to increase the size of the 250 MWt module and also utilise thorium in the fuel. The HTR program aims at exploring co-generation options in the near-term and producing hydrogen longer term. Eventually it is intended that a series of HTRs, possibly using Brayton cycle with helium directly driving the gas turbines, will be factory-built and widely installed throughout China. In March 2014 a new agreement between Tsinghua University and CNEC was described by CNEC as an important milestone in HTR commercialisation, evidently relating to domestic and international marketing of the technology.

In March 2005, an agreement between PBMR of South Africa and Chinergy Co. of Beijing was announced. PBMR Pty Ltd had been taking forward the HTR concept (based on earlier German work) since 1993 and was planning to build a 125 MWe demonstration plant. Chinergy Co. is drawing on the small operating HTR-10 research reactor at Tsinghua University which is the basis of their 100 MWe HTR-PM demonstration module which also derives from the earlier German development. The 2005 agreement was for cooperation on the demonstration projects and subsequent commercialisation, since both parties believed that the inherently safe pebble bed technology built in relatively small units would eventually displace the more complex light water reactors. In March 2009, a new agreement was signed between PBMR, Chinergy and INET, but PBMR then ran out of funds.

Russia is pursuing its interest in HTR development through collaboration with China, OKBM being responsible on their side.

Fast neutron reactors 

China's R&D on fast neutron reactors started in 1964. 

A 65 MWt sodium-cooled fast neutron reactor – the Chinese Experimental Fast Reactor (CEFR) – at the China Institute of Atomic Energy (CIAE) near Beijing, started up in July 2010.1 It was built by Russia's OKBM Afrikantov in collaboration with OKB Gidropress, NIKIET and Kurchatov Institute. It was grid connected at 40% power (8 MWe net) in July 2011, and ramped up to full 20 MWe power in December, then passed 'official' checks in October 2012. It has negative temperature, power reactivity and sodium void coefficients. Its fuel cycle is designed to use electrometallurgical reprocessing.

The CDFR-1000, a 1000 MWe Chinese prototype fast reactor based on the CEFR, is envisaged with construction start in 2017 and commissioning 2023 as the next step in CIAE's program. This is CIAE's 'project one' Chinese Demonstration Fast Reactor (CDFR). With a 40-year design lifetime, it will be a three-loop 2500 MWt pool type, with active and passive shutdown systems and passive decay heat removal. The reactor would use MOX fuel with average 66 GWd/t burn-up, run at 544°C, have breeding ratio 1.2, with 316 core fuel assemblies and 255 blanket ones. This could form the basis of the Chinese Commercial Fast Reactor (CCFR) by 2030, using MOX + actinide or metal + actinide fuel. MOX is seen only as an interim fuel, the target arrangement is metal fuel in closed cycle.

In October 2009, an agreement was signed by CIAE and CNEIC with Russia's Atomstroyexport to start pre-project and design works for a commercial nuclear power plant with two BN-800 reactorsc (see section on Sanming in the information page on Nuclear Power in China). These reactors are referred to by CIAE as 'project 2' Chinese Demonstration Fast Reactors (CDFRs), with construction originally to start in 2013 and commissioning 2018-19. The reactors will use ceramic MOX fuel pellets.

These conflicting proposals underline the fact that policy for proceeding with fast reactors in China is not yet determined. Broadly, 40 GWe of FNR capacity (with conversion ratio of 1) is envisaged by 2050, increasing markedly thereafter and displacing PWR capacity. Projections exist from CGN with higher conversion ratios and more capacity.

The CIAE's CDFR-1000 is expected to be followed by a 1200 MWe China Demonstration Fast Breeder Reactor (CDFBR) by about 2028, conforming to Generation IV criteria. This will have U-Pu-Zr fuel with 120 GWd/t burn-up and breeding ratio of 1.5 or more, with minor actinide and long-lived fission product recycle.

PWR capacity in China is expected to level off at 200 GWe about 2040, and fast reactors progressively increase from 2020 to at least 200 GWe by 2050 and 1400 GWe by 2100.

CGN and Xiamen University are reported to be cooperating on R&D for the travelling-wave reactor (TWR). The Ministry of Science & Technology, with CNNC and SNPTC, are skeptical of it. (This is a fast reactor design using natural or depleted uranium packed inside hundreds of hexagonal pillars. In a 'wave' that moves through the core at only one centimetre per year, the U-238 is bred progressively into Pu-239, which is the actual fuel. However, this design has now radically changed to become a standing wave reactor with the fuel shuffled in the core.) In January 2013 a prototype TWR-P was being discussed as a TerraPower-SNERDI joint project, and in December 2013 a US Federal Register notice said that the USA had negotiated an agreement with China “that would facilitate the joint development of TWR technology”, including standing wave versions of it.

Light water reactors (LWR)

CNNC has been developing an ACP1000, which has led to an ACP100 modular small reactor for electricity, heating and desalination. An ACP600 is also being developed.

CGN has been upgrading its CPR-1000 to the Generation III ACPR1000 with Chinese intellectual property rights.

The NEA then ordered these later 1000 MWe designs to be rationalised, the result of which was the Hualong 1000 or ACC1000. In this the ACP1000 core design prevailed, though it was less mature. Some features of the ACPR1000 are incorporated, at least in the CGN version. The CNNC and CGN versions will be very similar but not identical, and each organisation will maintain much of its own supply chain.

Fuller details of these numerous LWR designs are in the China Nuclear Power paper.

CNNC’s Nuclear Power Institute of China based in Chengdu is working on supercritical water-cooled reactor (SCWR) designs, both pressure vessel and pressure tube types. It is reported to be working on a demonstration unit which could be operating in 2022.

Cobalt-60 production

China has started production of the medical and industrial radioisotope cobalt-60 using CNNC's Candu 6 power reactors at Qinshan. This will be China's first domestic production of the isotope. Candu reactors are also used to produce cobalt-60 at Wolsong in South Korea, Bruce in Canada and Embalse in Argentina. The core of a Candu 6 has stainless steel adjusters that help to shape neutron flux to optimise power output and ensure efficient burn up of uranium fuel. The normal cobalt in these can be replaced with cobalt-59, which absorbs neutrons to become Co-60. After about 15 months the stainless steel 'targets' with Co-59 are withdrawn for processing. The development is part of China’s 11th Five Year Plan, and should lead to the production of 220 petabecquerels (PBq) of Co-60 per year – enough to satisfy 80% of Chinese needs. The addition will boost global production by around 10%.

Wastes 

Early in 2012 it was reported that Changsha Boiler Plant Co Ltd in Hunan province in collaboration with Shenzhen-based China Nuclear Power Technology Research Institute (CNPRI) was starting to build a plasma furnace or reactor for "transmuting nuclear wastes". No details were supplied. 

Non-proliferation

China is a nuclear weapons state, party to the Nuclear Non-Proliferation Treaty (NPT) under which a safeguards agreement with the International Atomic Energy Agency (IAEA) has been in force since 1989, with the Additional Protocol in force since 2002. China undertook nuclear weapons tests in 1964-96. Since then it has signed the Comprehensive Nuclear Test Ban Treaty, although it has not yet ratified it. In May 2004, it joined the Nuclear Suppliers Group (NSG).

The NSG membership gives rise to questions about China's supply of two small power reactors to Pakistan, Chasma 3&4. Contracts for Chasma units 1&2 were signed in 1990 and 2000, before China joined the NSG, which maintains an embargo on sales of nuclear equipment to Pakistan. The agreement for units 3&4 was announced in 2007, and signed in October 2008.

China has a bilateral safeguards agreement with Australia, and peaceful use agreements for nuclear materials with Canada, USA, Germany and France. The Canadian one is very similar to Australian bilateral safeguards agreements.

China uses Australian-obligated nuclear material only at nuclear facilities covered by its safeguards agreement with the IAEA. However, uranium conversion facilities are before the 'starting point' for IAEA safeguards procedures and are not included in IAEA safeguards agreements with nuclear weapons states. In accordance with long-standing international principles of accounting for nuclear material, on receipt of Australian natural uranium oxide concentrate in China an equivalent quantity of converted natural uranium in the form of uranium hexafluoride will be added to the inventory of a facility designated for safeguards – e.g. an enrichment plant. This will have exactly the same effect as if the natural uranium oxide had moved through the conversion plant, and will ensure that after receipt in China, such material remains in a facility designated for safeguards and listed under the bilateral agreement at all times.

All imported nuclear power plants – from France, Canada and Russia – are under IAEA safeguards, as is the Russian Hanzhun centrifuge enrichment plant in Shaanxi.

A significant number of military production reactors and other plants, with the related Chinese Academy of Engineering Physics, are in Sichuan province.


Further Information

Notes

a. The Fuzhou mine in the southeastern Jiangxi province is in a volcanic deposit, as is Quinglong.
Xinjiang's Yili basin in the far west of China, in which the Yining (or Kujiltai) ISL mine sits, is contiguous with the Ili uranium province in Kazakhstan, though the geology is apparently different.
The other mines are in granitic deposits.
Source: Uranium 2009: Resources, Production and Demand, OECD Nuclear Energy Agency and International Atomic Energy Agency (2010). [Back]

b. Myrrha (Multipurpose Hybrid Research Reactor for High-tech Applications) will be a sub-critical assembly relying on accelerated neutrons to achieve periods of criticality in a low-enriched uranium core. As well as being able to produce radiosiotopes and doped silicon, Myrrha's research functions would be particularly well suited to investigating transmutation. Earl in 2010, the Belgian government approved its share of funding of the facility at SCK-CEN's Mol site in northern Belgium. Belgium is to contribute 40% towards the €960 million ($1.3 billion) investment the project will require, but SCK-CEN is looking to set up an international consortium to ensure additional financing. Myrrha itself is scheduled for operation in 2023, but a reduced power model, Guinevere, became operational at Mol in March 2010. [Back]

c. This October 2009 agreement followed a call 12 months earlier by the Russian-Chinese Nuclear Cooperation Commission for construction of an 800 MWe demonstration fast reactor similar to the OKBM Afrikantov design being built at Beloyarsk 4 and due to start up in 2012. [Back]

References

1. Criticality for fast reactor, World Nuclear News (22 July 2010); Chinese fast reactor nears commissioning, World Nuclear News (7 April 2009) [Back]

General sources

China Guangdong Nuclear Power Group website (www.cgnpc.com.cn)

China National Nuclear Corporation website (www.cnnc.com.cn)

Dynabond Powertech

Country Analysis Briefs: China, Energy Information Administration, U.S. Department of Energy, available at http://www.eia.doe.gov/emeu/cabs/index.html

Uranium 2011: Resources, Production and Demand, "Red Book", OECD Nuclear Energy Agency and International Atomic Energy Agency (2012)

Z. Zhang and S. Yu, Future HTGR developments in China after the criticality of the HTR-10, Nuclear Engineering and Design, Volume 218, p249 (2002)

J. Qiu, Status and plans for nuclear power in China, World Nuclear Fuel Cycle 2006.

Xu Mi (CIAE), 2010, Fast Reactor Technology Development for Sustainable Supply of Nuclear Energy in China, CINS Beijing, Nov 2010.

Xiao Min (CGN), 2013, Status and Perspective of Spent Fuel Management and Fuel Cycle in China, WNA Plenary session, Sept.

Hongjie Xu et al, Thorium Energy R&D in China, ThEC13 conference, CERN, October 2013.

Westpac-BREE China Resources Quarterly http://www.bree.gov.au/sites/default/files/files//publications/crq/westpacbree-crq-201402.pdf