Environment and Health in Electricity Generation
December 2012
- Electricity provision must have
regard to minimising environmental and public health effects, both
directly from generation and indirectly from obtaining fuels and
dealing with wastes.
- With nuclear power the focus is on uranium mining and nuclear
wastes.
- The health and environmental costs of nuclear power are very low
relative to the main alternatives.
The need for electricity generation to be clean and safe has
never been more obvious. Nor have those attributes ever
been as popularly supported.
Environmental and health consequences of electricity
generation are important issues, alongside the affordability of the
power which is produced.
Environmental and health consequences are usually seen as
external costs - those which are quantifiable but do not appear in
the utility's accounts. Hence they are not passed on to the
consumer, but are borne by society at large. They
include particularly the effects of air pollution on human health,
crop yields and buildings, as well as occupational disease and
accidents. Though they are even harder to quantify and evaluate
than the others, external costs include effects on ecosystems and
the impact of global warming.
Production of electricity from any form of primary energy has
some environmental effect, and some risk. A balanced
assessment of nuclear power requires comparison of its
environmental effects with those of the principal alternative,
coal-fired electricity generation, as well as with other
options.
Environmental effects of electricity generation
These include the effects of obtaining the fuels from mines, using the fuels, and dealing with the wastes.
At a uranium mine, ordinary operating procedures normally ensure that there is no significant water or air pollution. The environmental effect of coal mining today is also small except that more extensive areas may require subsequent rehabilitation, and in certain situations of geology and climate, acid mine drainage due to oxidation of sulfur can be a problem. See section below.
Burning any fossil fuel gives rise to carbon dioxide, and this is addressed in a following section.
Small amounts of radioactivity are released to the atmosphere from both coal-fired and nuclear power stations. In the case of coal combustion small quantities of uranium, radium and thorium present in the coal cause the ash to be radioactive, the level varying considerably. Nuclear power stations and reprocessing plants release small quantities of radioactive gases (e.g. krypton-85 and xenon-133) and iodine-131, which may be detectable in the environment with sophisticated monitoring and analytical equipment but are never at harmful levels. Steps are being taken to reduce further emissions of both fly ash from coal-fired power stations and radionuclides from nuclear power stations and other plants. At present neither constitutes a significant environmental problem.
Disposal and dispersal of wastes from power generation
The solid high-level waste from nuclear power stations is hot
and very radioactive, so must be isolated
from people and the environment indefinitely. It is stored for
40-50 years while the radioactivity decays to less than one percent
of its original level. Then it will be finally disposed of deep
underground and well away from the biosphere. There has been no
pollution or plausible hazard from such material routinely removed
from power stations and nor is any likely, either short- or very
long-term. long-term.
Intermediate-level waste is placed in underground repositories,
not necessarily deep, with little delay. Low-level waste is
generally buried more conventionally. Radioactive fly ash from
coal-fired power stations has in the past had a much greater
environmental impact largely because it was not perceived as a
problem and appropriate action
was measures were not taken. Today most fly ash is removed from
stack gases and buried where seepage and run-off can be
controlled.
Further information about wastes from nuclear power is in the
paper on Radioactive Waste Management.
Waste heat produced due to the intrinsic inefficiency of
energy conversion, and hence as a by-product of power generation,
is much the same whether coal or uranium is the primary fuel.
The thermal efficiency of coal-fired power stations ranges up to a
possible 40 percent, with newer ones typically giving better than
35 percent. That of nuclear stations mostly ranges from 29-38
percent with the common light water reactor today giving about 34
percent.
There is no reason for preferring one fuel over the other on
account of the amount of waste heat and consequent water
requirements for cooling. This is the case whether power station
cooling is by water from a stream or estuary, or using atmospheric
cooling towers which evaporate water. However, it is noteworthy
that whereas coal-fired power plants tend to be located near a
source of coal, nuclear plants can be sited according to cooling
requirements, and can more readily make use of lake or sea water
for direct cooling. Hence they are less likely to require expensive
cooling towers or to deplete supplies of fresh water for
evaporative cooling.
In any case the dumped heat need not always be
"waste". In colder climates district heating and
agricultural uses are increasingly found. In
France the waste heat from a nuclear plant is used for a crocodile
farm. Any such use of waste heat decreases the extent to
which local fogs result from its release to the
environment in winter. In dryer climates, the rejected heat can be
used for desalination to provide potable water.
The main environmental matter relevant to power generation is
the production of carbon dioxide (CO2) and sulfur
dioxide (SO2) as a result of coal-fired electricity
generation. When coal of say 2.5 percent sulfur is used
to produce the electricity for one person in an industrialized
country for one year, then about 9 tonnes of
CO2 and 120 kg of SO2 are
produced.
Sulfur dioxide emissions arise from the combustion of
fossil fuels containing sulfur, as many of them do. Released
in large quantities to the atmosphere it can cause (sulfuric) "acid
rains" in areas downwind. In the northern hemisphere many
millions of tonnes of SO2 are released annually from electricity
generation, though such pollution has been dramatically reduced
from earlier levels. The acid rain (rainwater having a pH of
4 and lower) in north-eastern USA and Scandinavia causes ecological
changes and economic loss. In the UK and the USA electric
power utilities at first sought to minimize this by increasing
their use of natural gas.
It is possible to remove a lot of the SO2 from
coal stack gases using flue gas desulphurization equipment, but the
cost is considerable. Power utilities have spent many
billions of dollars on this. On the other hand, between 1980
and 1986 SO2 emissions in France were halved simply by
replacing fossil fuel power stations with nuclear ones. At
the same time electricity production increased 40 percent and
France became a significant exporter of
electricity.
Oxides of nitrogen (NOx) from fossil fuel power stations
operating at high temperatures are also an environmental problem,
regardless of the fuel source. If high levels of hydrocarbons
are present in the air, nitrogen oxides react with these in
sunlight to form photochemical smog. Moreover, oxides of
nitrogen have an adverse effect on the Earth's ozone layer,
increasing the amount of ultra-violet light reaching the Earth's
surface.
Health effects of power generation
Traditionally occupational health risks have been measured
in terms of immediate accident, especially fatality, rates.
However, today, and particularly in relation to nuclear power,
there is an increased emphasis on less obvious or delayed effects
of exposure to cancer-inducing substances and
radiation.
Many occupational accident statistics have been generated over
the last 50 years of civil nuclear power in North America and
Europe. These can be compared with those from coal-fired
and other electricity generation. All show that nuclear is
distinctly the safer means of electric power generation in this
respect. Two simple sets of figures are quoted in Tables 1
& 2. A major reason for coal showing up unfavourably is
the huge amount of it which must be mined and transported to supply
even a single large power station - some 20,000 times as much coal
as uranium from the mine. Mining and multiple handling of so
much material of any kind involves hazards, and these are reflected
in the statistics.
Table 1 Comparison of accident
statistics in primary energy production.
(Electricity generation accounts for
about 40% of total primary energy).
|
Fuel |
Immediate fatalities
1970-92
|
Who? |
Normalized to deaths
per TWy* electricity
|
| Coal |
6400 |
workers |
342 |
| Natural gas |
1200 |
workers &
public |
85 |
| Hydro |
4000 |
public |
883 |
| Nuclear |
31 |
workers |
8 |
Health risks in uranium mining are very minor
today. In the 1950s exposure of miners to radon gas led
to a higher incidence of lung cancer. For over forty years,
however, exposure to high levels of radon has not been a feature of
uranium (or other) mines. Today, the presence of some
radon around a uranium mining operation and some dust bearing
radioactive decay products - as well as the hazards of inhaled coal
dust in a coal mine - are well understood. In both cases,
using the best current practice, the health hazards to miners are
very small and certainly less than the risks of industrial
accidents.
(The radiation level one metre from a drum of freshly-processed
U3O8 is about half that - from cosmic rays - on a commercial jet
flight.)
In other parts of the nuclear fuel cycle, radiation hazards to
workers are low, and industrial accidents are
few. Further comment on radiation is in the following
section.
Certainly nuclear power generation is not completely free of
hazards in the occupational sense, but it does appear to be far
safer than other forms of energy conversion. Table 1
covers more than 20 years.
Environmental effects of mining
The two main fuels conventionally mined for power generation are
coal and uranium. Natural gas, like oil, is obtained from wells
drilled into the Earth's crust, though increasingly this uses
hydraulic fracturing (fracking) of hard rock to release it.
Coal mining may be underground, with the surface effects limited to
spoil heaps of rejected material, or it may be open cut, sometimes
involving very extensive environmental impact.
Uranium mining may be underground, open pit, or in situ leach. The
extent of any excavation is very much less than for an equivalent
amount of coal, and the main environmental concern with
conventional (underground or open pit) mining is the tailings
resulting from removing the valuable minerals from the crushed
waste rock. Tailings are fine sandy material which must be emplaced
back in the mine or in engineered dams. The tailings contain most
of the radioactivity from the orebody, and may also have sulphides
with potential to generate acid. They comprise most of the volume
of the ore that is mined. Dealing with them is
straightforward.
With in situ leach (ISL) mining, the ore stays underground, and
oxygenated goundwater is circulated to dissolve the uranium. Here
the main issue is ensuring that there is no pollution of other
groundwater from the operation.
See further: Uranium Mining paper.
Radiation
Environmental (non-occupational) health effects of
radiation are qualitatively similar to those potentially affecting workers in
the industry. Popular concern about ionizing radiation
initially grew out of the testing of nuclear weapons, not to
mention the threat of their possible use. Correspondingly,
these tests provided the nuclear power industry with a strong
awareness of radiation hazards. Fortunately radioactivity is
readily measurable and its effects fairly well understood compared
with those of other hazards with delayed
effects - including virtually all chemical
cancer-inducing substances. Radiation is a weak
carcinogen.
The contrast between air quality effects from coal burning for
electricity and increased radiation from nuclear power
is very marked: a person living next to a nuclear power plant
receives less radiation from it than from a few hours flying each
year (see Table 3). On the other hand, anyone downwind of a
coal-fired power plant can expect it to have some effect on the air
quality.
Table 3 shows some typical levels and sources of radiation
exposure. The contribution from the ground and buildings
varies from place to place. Personal exposure is measured in
millisieverts (mSv). In most parts of the world levels range
up to 3 millisieverts per year (mSv/yr) per person for
everybody.
Citizens of Cornwall, UK, receive an average of about
7mSv/yr. Hundreds of thousands of people in India,
Brazil and Sudan receive up to 40 mSv/yr. Several places
are known in Iran, India and Europe where natural background
radiation gives an annual dose of more than 50 mSv and in Ramsar in
Iran it can give up to 260 mSv . Lifetime doses from natural
radiation range up to several thousand millisievert. However,
there is no evidence of increased cancers or other health problems
arising from these high natural levels.
Cosmic radiation dose varies with altitude and
latitude. Aircrew can receive up to about 5 mSv/yr from
their hours in the air, while frequent flyers can score a similar
increment. In contrast, UK citizens receive about 0.0003
mSv/yr from nuclear power generation and this would be typical of
countries using on nuclear power.
In the Chernobyl accident, a large number of people were subject
to significantly increased radiation exposure, the actual doses
being approximately known. In the Fukushima accident, few workers
and very few others were subject to radiation exposure at levels of
concern. Preliminary findings after 18 months by the UN Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) show that no radiation heath effects arising from the Fukushima accident had been observed among the public or the workers.
However, following the Chernobyl and Fukushima nuclear accidents,
large areas were contaminated with radioactive fallout, notably
caesium-137, with a 30-year half-life. The question then arises,
what level of contamination will pose a health hazard to returning
evacuees? This is contentious, since a purely scientific appraisal
will allow most people to return home early, but political
nervousness based on popular sentiment will strive for criteria
based on levels far below what might be harmful.
Radiation exposure of the public from uranium mining and nuclear
power is minimal, and further information on the subject is in the WNA info paper: Radiation and Life.
Greenhouse gas emissions
Greenhouse here refers to the effect of certain trace gases in
the Earth's atmosphere so that long-wave radiation such as heat
from the earth's surface is trapped. A build-up of greenhouse
gases, notably CO2, appears to be causing a warming of the climate
in many parts of the world, which will cause changes in weather
patterns. Much of the greenhouse effect is due to carbon
dioxide[1].
While our understanding of relevant processes is improving, we
do not know how much carbon dioxide the environment can absorb, nor
how long-term global CO2 balance is maintained. However,
scientists are increasingly concerned about the steady worldwide
build-up of CO2 levels in the atmosphere, and political initiatives
reflect this concern. The build-up is occurring as the
world's carbon-based fossil fuels from the Earth's crust are being
burned and rapidly converted to atmospheric CO2 e.g. in motor
vehicles, domestic and industrial furnaces, and electric power
generation. Progressive clearing of the world's forests also
contributes to the greenhouse effect by diminishing the removal of
atmospheric CO2 by photosynthesis.
As early as 1977 a USA National Academy of Sciences report
concluded that "the primary limiting factor on energy production
from fossil fuels over the next few centuries may turn out to be
the climatic effects of the release of carbon
dioxide". Today this is conventional wisdom. The
inexorable increase of CO2 levels in the atmosphere, coupled
with concern about their climate effect, is now a very
significant factor in the comparison of coal and nuclear power for
producing electricity.
Worldwide emissions of CO2 from burning fossil fuels total
about 28 billion tonnes per year. About 38% of this is from
coal and about 43% from oil. Every 1000 MWe power station
running on black coal produces CO2 emissions of about 7 million
tonnes per year. If brown coal is used, the amount is about 9
million tonnes. Nuclear fission does not produce CO2, while
emissions from other parts of the fuel cycle (e.g. uranium mining
and enrichment) amount to about 2% of those from using coal, and
some audited figures show considerably less than
this. Every 22 tonnes of uranium (26 t U3O8) used [2] saves about one million tonnes of CO2
relative to coal.
Further discussion of the climate change implications of
electricity generation is in the paper Uranium,
Electricity and Climate Change.
[1] CO2 constitutes 0.035% (390
ppm) of the atmosphere. An increase from 280 to 390 ppm has
already occurred since the beginning of the Industrial
Revolution.
[2] in a light water reactor