Latest Updates - Weekly Digest

Subscribe to World Nuclear Association Weekly Digests emails

Significant nuclear-related news items in perspective. For previous items, see the Archive.

9 & 16 March 2018

New Russian reactor in operation

The first of two new 1170 MWe (gross) reactors of the Leningrad power plant at Sosnovy Bor near St Petersburg has been connected to the grid, after starting up four weeks earlier. Construction has taken 113 months and net power is 1085 MWe. Early construction problems set back the schedule, and successful repair of the oldest two RBMK units at the plant removed any urgency. Eventually four of the new VVER-1200 reactors will replace the four operating RBMK-1000 units there, commissioned from 1974 to 1981, and now due to be shut down over the next decade. This is the first V491 version of the VVER-1200 to operate, and it is the model intended to be built at Tianwan in China.  Two are under construction in Belarus. It brings to 38 the number of nuclear power reactors operating in Russia, with total of about 29 GWe net.
WNN 9/3/18.  Russia NP

New reactor starts commercial operation in China

Tianwan 3 in Jiangsu province has been handed over to its owners by Russia’s Atomstroyexport.  It was connected to the grid at the end of December and its twin, unit 4, is about a year behind it.  Units 5 & 6 at Tianwan are Chinese ACPR1000 units under construction, but units 7 & 8 are planned as 1200 MWe Russian VVER reactors, and negotiations on these are proceeding. China has 38 operating reactors totalling 34.6 GWe net.
WNN 8/3/18.  China NP

Potential progress on large Indian nuclear plant

A new agreement between Electricite de France (EdF) and the Nuclear Power Corporation of India Ltd (NPCIL) has been signed to advance the prospects of building six French reactors at Jaitapur. The saga started with a February 2009 general agreement with Areva and then a framework agreement 22 months later for the first two 1600 MWe EPR units with Alstom turbine-generators, along with 25 years supply of fuel.  Arrangements and negotiations have since proceeded, with French government finance in the form of a 25-year loan at 4.8% to cover the expected $21 billion cost of the first two reactors.

However, as with two other major nuclear projects in India involving western reactor vendors, progress stalled due to India’s unique third party liability laws passed in 2010. The international Convention on Supplementary Compensation for Nuclear Damage (CSC) entered force for India in May 2016. Then in July 2016 EdF submitted a fresh proposal to NPCIL and the Ministry of External Affairs for six EPR units, but seeking further guarantee of “the same level of protection” in relation to liability that is available at the international level, and citing the Vienna convention on liability. It is not clear how this matter is addressed in the new agreement.  EdF will provide the main equipment for the plant, and NPCIL will build it. For the first two reactors, EdF will undertake all engineering studies and component procurement. Local content may reach 60% for the last two of the six reactors.
WNN 12/3/18.  India

Further reactor restart in Japan

Unit 3 of Kansai’s Ohi nuclear power plant in Japan's Fukui Prefecture has restarted. The reactor - the sixth to be restarted after clearing the country's revised safety regulations and local political sensitivities - is expected to resume commercial operation early next month. It last ran July 2012 to September 2013, following the Fukushima accident of March 2011.
WNN 15/3/18.  Japan NP

2 March 2018

French nuclear industry restructuring completed

With two Japanese companies each taking up a 5% share in the fuel cycle company resulting from Areva’s commercial distress, the restructuring of the French nuclear industry over three years is complete.  The new company, Orano, is now owned by the French state (45.2%), the Commission of Atomic Energy and Alternative Energy (4.8%), Areva SA (40%), Mitsubishi Heavy Industries (5%) and Japan Nuclear Fuel Ltd (5%).  Each 5% Japanese share involved a €250 million investment.  Orano comprises the mining, conversion, enrichment, fuel fabrication, reprocessing and other back-end services of Areva.  JNFL is responsible for the Rokkasho reprocessing plant in Japan, the completion of which has been delayed many times, and its mixed-oxide (MOX) fuel fabrication plant.

Areva earlier saw the new fuel cycle company as “refocused on less-risky cash flow generating operations” compared with its disastrous reactor business and thus able to refinance on capital markets and “in a good position to grow.”  Orano intends to increase its Asian revenue from 20% to 30% of total by 2020 and achieve positive net cash flow this year. It plans to invest €1.8 billion in modernising its plants by 2025.

The other major company formed in the French restructuring is Framatome, taking over most of Areva NP, it is now largely owned by Electricite de France (EDF).  This comprises the reactor design and vendor side of Areva, with fuel design, supply and services to existing nuclear power plants. Mitsubishi Heavy Industries, with a similar industry profile, also invested about €483 million in this company to hold 19.5% of it. The hugely delayed and greatly over-budget Olkiluoto 3 project in Finland was excluded, and stays with Areva SA.
WNN 27/2/18.   France

Ukraine aims for scaled-down nuclear plans

Since 2006 Ukraine has had plans to more than double its already large nuclear power capacity to reduce its dependence on Russian gas. Currently more than half of Ukraine’s electricity is from its 15 operating reactors at four sites. A nuclear power strategy involving building and commissioning 11 new reactors with total capacity of 16.5 GWe (and nine replacement units totaling 10.5 GWe) to more than double nuclear capacity by 2030 was approved by the government in 2006 to enhance Ukraine's energy independence. The strategy is moot in the absence of finance. Meanwhile plans for Russia to complete Khmelnitski 3 & 4, both 1000 MWe and respectively 75% and 28% complete when work stopped in 1990, have been aborted politically. 

The two oldest units in Ukraine are VVER-440 reactors at Rovno which came on line in 1981 and 1982.  These have had licences extended to 2030-31 and together provide 760 MWe net. Their replacement was to be part of the above plans, but now Energoatom has signed an agreement with US-based Holtec International to replace them by 2030 with multiple Holtec SMR-160 units “as a pilot project”, and to set up a manufacturing hub for these reactors.  Holtec welcomed Ukraine becoming “the first mover in Holtec’s small modular reactor program”, so that it could “become a world leader in the emerging small modular reactor industry”.  The SMR-160 units are also envisaged as cogeneration industrial heat sources.

Holtec already has a well-established presence in Ukraine. The national Central Spent Fuel Storage Facility (CSFSF) for VVER fuel is being built by Holtec International near Chernobyl under a $460 million contract, and is due to accept the first used fuel next year.  Holtec is also building the $411 million Chernobyl Dry Storage (ISF-2) project, for RBMK fuel from Chernobyl, and due for completion this year. Ukraine’s Turboatom, a major source of steam turbines for nuclear and other plants, is building Holtec’s Hi-Storm 190 casks for the CSFSF, that agreement being celebrated as “the dawn of a new chapter in US-Ukraine cooperation.” (Ukrainian power plants employ 47 Turboatom-made turbines and 43 Russian ones, for which Turboatom is now making spare parts.)
WNN 2/3/18.  Ukraine, Small reactors

23 February 2018

US returns to fast reactor R&D

A bipartisan bill passed unanimously by the US House of Representatives has authorized the construction of a “versatile reactor-based fast neutron source, which shall operate as a national user facility” by 2026, and allocated almost $2 billion for it. This will be a research reactor for “development of advanced reactor designs, materials and nuclear fuels,” and is reported to be at least 300 MWt. There is a world shortage of fast reactor research capacity, especially for fast neutron materials testing for Generation IV reactor developments. At present the only fast neutron research reactor is BOR-60 in Russia, at Dimitrovgrad, which is also being used by French researchers. A new one – MBIR - with four times the irradiation capacity, is under construction there as the centrepiece of an International Research Centre.

Through to 1985 the US Department of Energy invested heavily in fast reactor R&D, and five fast neutron reactors were operated, with several more designed.  The flagship unit was the EBR-II, a 62.5 MW thermal demonstration reactor which typically operated at 19 MWe, providing heat and over 2 TWh of power to the Idaho laboratory over 1963-94.  Having demonstrated a complete sodium-cooled breeder reactor power plant with on-site reprocessing of metallic fuel, the emphasis then shifted to testing materials and fuels (metal and ceramic oxides, carbides and nitrides of U & Pu) for larger fast reactors.  Finally it became the prototype for an Integral Fast Reactor (IFR) using metallic alloy U-Pu-Zr fuels.  IFR program goals included demonstrating inherent safety apart from engineered controls, improved management of high-level nuclear wastes by recycling all actinides so that only fission products remained as high-level waste, and more fully using the energy potential of uranium. These were demonstrated, though the whole program was aborted in 1994 by the Clinton administration. IFR fuel first used in 1986 reached 19% burnup (compared with 3-4% for conventional reactors), and 22% was targeted.
WNN 16/2/18.   US NFC, Russia NFC

New Westinghouse micro reactor to be evaluated in Canada

The Canadian Nuclear Safety Commission is to conduct a pre-licensing vendor design review (VDR) of Westinghouse’s eVinci micro reactor, along with other designs including NuScale’s small modular reactor. The eVinci is a radically new concept among the many small reactor designs now coming forward for commercial nuclear power. It is a heatpipe reactor, using a fluid in numerous sealed steel heatpipes to conduct heat from the hot fuel (where the fluid vapourises) to the external condenser (where the fluid releases its latent heat of vapourisation) with heat exchanger. No pumps are needed to effect continuous isothermal vapor/liquid internal flow at low pressure. The principle is well established on a small scale, but here a liquid metal is used as the fluid and reactor sizes up to several megawatts are envisaged. Experimental work on reactors for space has been with much smaller units (about 100 kWe), using sodium as the fluid. They have been developed since 1994 as a robust and low technical risk system for space exploration with an emphasis on high reliability and safety.

The eVinci reactors would be fully factory built and fuelled. As well as power generation, process heat to 600°C would be available. Units would have five- to ten-year life, with walk-away safety due to inherent feedback diminishing the nuclear reaction with excess heat, also effecting load-following.
WNN 20/2/18.  Small reactors

You may also be interested in