My group at the University of Pittsburgh developed an elaborate study designed specifically to test the LNT (Ref 23). We briefly review it here. We compiled hundreds of thousands of radon measurements from several sources to give the average radon level (r) in homes for 1729 US counties, well over half of all US counties and comprising about 90% of the total US population. Plots of age-adjusted lung cancer mortality rates (m) as a function of radon level are shown in Figures 9a and 9c.
Rather than showing individual points for each county, we have grouped them into intervals of r (shown on the baseline, along with the number of counties in each group). We plot the mean value of m for each group, its standard deviation (indicated by the error bars), and the first and third quartiles of the distribution. Note that when there is a large number of counties in an interval, the standard deviation of the mean is quite small. We see a clear tendency for m to decrease with increasing r, in sharp contrast to the increase expected from the supposition that radon can cause lung cancer, shown by the line labelled "theory".
One obvious problem is migration: people do not spend their whole lives and receive all of their radon exposure in their county of residence at time of death, where their cause of death is recorded. However, it is easy to correct the theoretical prediction for this, and the "theory" lines in Figure 9 have been so corrected. As part of this correction, data for Florida, California and Arizona, where many people move after retirement, have been deleted, reducing the number of counties to 1601 (this deletion does not affect the results).
A more serious problem is that this is an "ecological study", i.e. it relates the average risk of groups of people (county populations) to their average dose. Since most dose-response relationships have a threshold below which there is little or no risk, the disease rate depends largely on the fraction of the population that is exposed above this threshold, which is not necessarily closely related to the average dose, which may be far below the threshold. Thus, in general, the average dose does not determine the average risk, and to assume otherwise is what epidemiologists call the "ecological fallacy".
However, it is easily shown that the ecological fallacy does not apply in testing a linear no-threshold theory (LNT). This is familiar from the well known fact that, according to the LNT, population dose in person-rem determines the number of deaths; person-rem divided by the population gives the average dose, and number of deaths divided by the population gives the mortality rate, which is the average risk. These are the quantities plotted in Figure 9. Other problems with ecological studies have been discussed in the epidemiology literature, but these have also been investigated and found not to be applicable to our study.
Epidemiologists normally study the mortality risk to individuals, m', from their exposure dose, r', so we start from that premise using the BEIR-IV version of the LNT (in simplified form; full treatment is given in Ref 23):
for non-smokers
for smokers
where an and as are constants determined from national lung cancer rates, and b is a constant determined from studies of miners exposed to high radon levels. Summing these over all people in the county and dividing by the population gives:
| (1) | m = [ S as + (1 - S) an ] ( 1 + b r ) |
where m and r have the county average definitions given above in the presentation of Figure 9, and S is the smoking prevalence (the fraction of the adult population that smokes).
Equation (1) is the prediction of the LNT theory that we are testing here (we also show that our test applies not only to the BEIR-IV version but to all other versions of the LNT theory). Note that it is derived by rigorous mathematics from the risk to individuals, with no problem from the ecological fallacy.
The term in square brackets in equation (1) we call m0, thus equation (1) becomes:
The term m0 contains the information on smoking prevalence, so m/m0 may be thought of as the lung cancer rate corrected for smoking. Figures 9b and 9d show m/m0 as a function of r. We fit the data (all 1601 points) to the equation:
From this, we derive values of B, which can be compared with b in equation (1).
The theory lines are from equation (1) with slight re-normalisation at a value of 1 pCi/l, because A in equation (3) is found not to equal unity as in equation (2). It is clear from Figures 9b and 9d that there is a huge discrepancy between measurements and theory. The theory predicts B = +7.3% per pCi/l, whereas the data are fitted by B = -7.3 (±0.6)% and -8.3 (±0.8)% per pCi/l for males and females respectively. We see that there is a discrepancy between theory and observation of about 20 standard deviations; we call this our "discrepancy".
All explanations for our discrepancy that we could develop, or that have been suggested by others, have been tested and found to be grossly inadequate. We review some of the details of this process here.
There may be some question about the radon measurements, but three independent sources of radon data (our own measurements, US Environmental Protection Agency measurements, and measurements sponsored by various states governments) have been used and each gives essentially the same results. These three sets of data correlate well with one another, and by comparing them, we can estimate the uncertainties in each and in our combined data set; these indicate that uncertainties in the radon data are not a problem.
Another potential problem is in our values of smoking prevalence, S. Three different and independent sources of data on smoking prevalence were used, and all result in essentially the same discrepancy with the LNT seen in Figures 9b and 9d. Nevertheless, since cigarette smoking is such an important cause of lung cancer, one might think that uncertainties in S values can frustrate our efforts.
Analysis shows that the situation is not nearly so unfavourable. The relative importance of smoking and radon for affecting the variation of lung cancer rates among US counties may be estimated by use of the BEIR-IV theory. For males, the width of the distribution of S values, as measured by the standard deviation (SD) for that distribution, is 13.3% of the mean, and according to BEIR-IV a difference of 13.3% in S would cause a difference in lung cancer rates of 11.3%. The SD in the width of the distribution of radon levels for US counties is 58% of the mean which, according to BEIR-IV, would cause a difference in lung cancer rates of 6.6%. Thus, the importance of smoking for determining variations in lung cancer rates among counties is less than twice (11.3/6.6) that of radon. Smoking is not as dominant a factor as one might intuitively think it is.
Even more important for our purposes is the fact that smoking prevalence can only influence our results to the extent that it is correlated with the average radon levels in counties. Thus, we are facing a straightforward quantitative question: how strong a correlation between S and r, which we label CORR-r, would be necessary to explain our discrepancy? If we use our best estimate of the width of the distribution of S values for US counties, even a perfect negative correlation between radon and smoking prevalence (CORR-r = -1.0) eliminates only half of the discrepancy. If the width of the S value distribution is doubled, making it as wide as the distribution of lung cancer rates, which is the largest credible width since other factors surely contribute to lung cancer rates, an essentially perfect negative correlation (CORR-r = -0.90) would be required to explain the discrepancy. To cut the discrepancy in half requires CORR-r = -0.62.
How plausible is a CORR-r that is this large? There is no obvious direct relationship between S and r, so the most reasonable source of a correlation is through confounding by socio-economic variables (SEVs). We studied 54 different SEVs to find their correlation with r. We included population characteristics, vital statistics, medical care, social characteristics, education, housing, economics, government involvement, etc. The largest magnitude for CORR-r was 0.37, the next largest was 0.30. For 49 of the 54 SEVs, the magnitude of CORR-r was less than 0.20. Thus a CORR-r for smoking prevalence, S, which even approached a magnitude of 0.90, or even 0.62, seems completely incredible. We conclude that errors in our S values can do little to explain our discrepancy.
In another largely unrelated study (Ref 24), we found that the strong correlation between radon exposure and lung cancer mortality (with or without S as a co-variate), albeit negative rather than positive, is unique to lung cancer. No remotely comparable correlation was found for any of the other 32 cancer sites. We conclude that the observed behaviour is not something that can easily occur by chance.
To investigate effects of a potential confounding variable, data are stratified into quintiles on the values of that variable, and a regression analysis is done separately for each stratum. Since the potential confounding factor has nearly the same value for all counties in a given stratum, its confounding effect is greatly reduced in these analyses. An average of the slopes, B, of the regression lines for the five quintiles then gives a value for B that is largely free of the confounding under investigation.
This test was carried out for the 54 socio-economic variables mentioned above, and none was found to be a significant confounding factor. In all 540 regression analyses (54 variables x 5 quintiles x 2 sexes), the slopes, B, were negative and the average B value for the five quintiles was always close to the value for the entire data set. Incidentally, this means that the negative correlation between lung cancer rates and radon exposure is found if we consider only the very urban counties, or if we consider only the very rural counties; if we consider only the richest counties, or if we consider only the poorest; if we consider only the counties with the best medical care, or if we consider only those with the poorest medical care; and so forth, for all 54 socio-economic variables. It is also found for all strata in between, for example, considering only counties of average urban-rural balance, or considering only counties of average wealth, or considering only counties of average medical care, etc.
The possibility of confounding by combinations of socio-economic variables was studied by multiple regression analyses and found not to be an important potential explanation for the discrepancy.
The stratification method was used to investigate the possibility of confounding by geography, by considering only counties in each separate geographical region, but the results were similar for each region. The stratification method was also used to investigate the possibility of confounding by physical features such as altitude, temperature, precipitation, wind, and cloudiness, but these factors were of no help in explaining the discrepancy. The negative slope and gross discrepancy with the LNT is found if we consider only the wettest areas, or if we consider only the driest; if we consider only the warmest areas, or if we consider only the coolest; if we consider only the sunniest, or if we consider only the cloudiest; etc.
The effects of the two principal recognised factors that correlate with both radon and smoking were calculated in detail:
- Urban people smoke 20% more, but average 25% lower radon exposures than rural people.
- Houses of smokers have 10% lower average radon levels than houses of non-smokers.
These were found to explain only 3% of the discrepancy. Since they are typical of the largest confounding effects one can plausibly expect, it is extremely difficult to imagine a confounding effect that can explain the discrepancy. Requirements on such an unrecognised confounding factor were listed, and they make its existence seem extremely implausible.
Since no other plausible explanation has been found after years of effort by myself and others, I conclude that the most plausible explanation for our discrepancy is that the linear no-threshold theory fails, grossly over-estimating the cancer risk in the low dose, low dose rate region. There are no other data capable of testing the theory in that region.
An easy answer to the credibility of this conclusion would be for someone to suggest a potential, not implausible, explanation based on some selected variables. Either they or I will then calculate what values of those variables are required to explain our discrepancy. We can then make a judgement on the plausibility of that explanation. To show that this procedure is not unreasonable, I offer to provide a not implausible explanation for any finding of any other published ecological study. This alone demonstrates that our work is very different from any other ecological study, and therefore deserves separate consideration.