World Energy Needs and Nuclear Power

(Updated September 2017)

  • The world will need greatly increased energy supply in the future, especially cleanly-generated electricity.
  • Electricity demand is increasing twice as fast as overall energy use and is likely to rise by more than two-thirds 2011 to 2035. In 2012, 42% of primary energy used was converted into electricity.
  • Nuclear power provides about 11% of the world's electricity, and 21% of electricity in OECD countries.
  • All major international reports on energy future suggest an increasing role for nuclear power as an environmentally benign way of producing reliable electricity on a large scale.
  • Renewable energy sources such as solar and wind are costly per unit of output and are intermittent but can be helpful at the margin in providing clean power.

Apart from increased electricity demand in the future, clean air is vital. About seven million people die prematurely each year as a result of air pollution, many of these either from industrial sources such as power generation or from indoor air pollution which could be averted by electricity use. The World Health Organization (WHO) said that low- and middle-income countries in the WHO South-East Asia and Western Pacific regions had the largest air pollution-related burden in 2012, with a total of 3.3 million deaths linked to indoor air pollution and 2.6 million deaths related to outdoor air pollution. Worldwide, WHO estimates indoor air pollution was linked to 4.3 million deaths in 2012 in households cooking over coal, wood and biomass stoves.

Primary energy and electricity outlook

With the United Nations predicting world population growth from 7.3 billion today to 9.2 billion by 2040, demand for energy must increase substantially over that period. Both population growth and increasing standards of living for many people in developing countries will cause strong growth in energy demand, as outlined above. Over 70% of the increased energy demand is from developing countries, led by China and India. China has already overtaken the USA as the world’s largest energy consumer, and by 2040 it is expected to use nearly twice as much energy as the USA. Superimposed on this, the UN Population Division projects an ongoing trend of urbanisation, from 52% in 2011 to 62% in 2035 and reaching 70% worldwide by 2050, enabling world population to stabilize at about 9 billion with better food supply, clean water, sanitation, health, education and communication facilities.

Coal is not limited globally, but large amounts need to be moved from where it is plentiful to where it is needed, mainly for power generation. This has both economic and carbon emission implications (apart from actually burning it). Natural gas is abundant and increasingly traded over long distances, with supplies in several countries increasing due to technology enabling access to gas in shale beds. Oil is more limited, though here too production has increased due to fracking. It is of unique value for transport.

The annual World Energy Outlook from the OECD's International Energy Agency (IEA) sets out the current situation and also presents current policies*, new policies, and carbon reduction (‘450’) scenarios. In World Energy Outlook 2013, from 2000 to 2010 total world primary energy demand grew by 26%, and electricity growth is about double this. Electricity demand almost doubled from 1990 to 2011, and is projected to grow 81% from 2011 to 2035 (from 19,004 TWh to 34,454 TWh) in the Current Policies scenario, and 69% (to 32,150 TWh) in the central New Policies scenario. Increased electricity demand is most dramatic in Asia, projected to average 4.0% or 3.6% per year respectively to 2035. Currently some two billion people have no access to electricity, and it is a high priority to address this lack. Electricity Information annually from the same source gives the latest available data on world electricity generation and its fuels.

* This describes what would happen if, among other things, governments were to take no new initiatives bearing on the energy sector, beyond those already adopted. It is thus a baseline, not a forecast.

In the World Energy Outlook 2016 New Policies scenario, there are many changes ahead. While coal-fired power generation doubled in the 20 years to 2014, growth in coal use will slow down, with a projected 5.5% increase in demand to 2040. Coal’s share of electricity production is expected to drop from 41% today to 28% in 2040, except in the WEO 450 scenario where it drops to 7%. The nuclear share increases only slightly to 12%, though in the WEO 450 scenario it becomes 18% of the total. (The nuclear industry's goal is for nuclear power to provide 25% of electricity by 2050.) The contribution of gas increases only slightly, from 22% today to 23% in 2040. However, there is a huge increase in the contribution from non-hydro renewables, from 6% today to 21% in 2040, and in the 450 scenario it becomes 38%. The hydro share stays at 16% in New Policies but rises to 20% in the 450 scenario.

World Electricity Consumption by Region area graph

Nuclear power for electricity in published scenarios

Nuclear power generation is an established part of the world's electricity mix providing in 2014 almost 11% of world electricity of 23,815 TWh. It is especially suitable for meeting large-scale, continuous electricity demand which requires reliability (i.e. base-load), and hence ideally matched to increasing urbanisation worldwide.

World Nuclear Association Harmony programme

The World Nuclear Association has published its Harmony vision for the future of electricity, developed from the International Energy Agency’s ‘2°C Scenario' (2DS) in reducing CO2 emissions*. This IEA scenario adds 680 GWe of nuclear capacity by 2050, giving 930 GWe then (after 150 GWe retirements from 2014’s 396 GWe), providing 17% of world electricity. Harmony sets a further goal for the nuclear industry, drawing on the experience of nuclear construction in the 1980s.

* See section below on the 2015 edition of the International Energy Agency's Energy Technology Perspectives.

The Harmony goal is for the nuclear industry to provide 25% of global electricity and build 1000 GWe of new nuclear capacity by 2050. The World Nuclear Association says this requires an economic and technological level playing field, harmonised regulatory processes to streamline nuclear construction, and an effective safety paradigm which focuses safety efforts on measures that make the most difference to public wellbeing. The build schedule would involve adding 10 GWe per year to 2020, 25 GWe per year to 2025 and 33 GWe per year from then. This rate compares with 31 GWe per year in the mid-1980s. The Harmony goal is put forward at a time when the limitations, costs and unreliability of other low-carbon sources of electricity are becoming high-profile politically in several countries.

OECD World Energy Outlook

Annual editions of the World Energy Outlook from the OECD International Energy Agency make clear the increasing importance of nuclear power in meeting energy needs while achieving security of supply and minimising carbon dioxide emissions.

The 2006 edition of this report warned that if policies remained unchanged, world energy demand to 2030 is forecast to increase by 53% accompanied by supply crises, giving a "dirty, insecure and expensive" energy future which would be unsustainable. The report showed that nuclear power could make a major contribution to reducing dependence on imported gas and curbing CO2 emissions in a cost-effective way, since its uranium fuel is abundant. However governments needed to play a stronger role in facilitating private investment, especially in liberalized electricity markets where the trade-off between security and low price had been a disincentive to investment in new plant and grid infrastructure.

The World Energy Outlook 2010 report built on this and showed that removing fossil‐fuel consumption subsidies, which totaled $312 billion in 2009 (mostly in non-OECD countries), could make a big contribution to meeting energy security and environmental goals, including mitigating CO2 and other emissions. The report notes that while China's energy use was half that of the USA in 2000, it overtook the USA in 2009. In the WEO 2010 New Policies scenario electricity demand was expected to grow at 2.2% pa to 2035, almost double the rate of primary energy, and with 80% of the growth being in non-OECD countries.

Following the Fukushima accident, World Energy Outlook 2011 New Policies scenario had a 60% increase in nuclear capacity to 2035, compared with about 90% the year before. "Although the prospects for nuclear power in the New Policies Scenario are weaker in some regions than in [WEO 2010] projections, nuclear power continues to play an important role, providing base-load electricity. ... Globally, nuclear power capacity is projected to rise in the New Policies Scenario from 393 GW in 2009 to 630 GW in 2035, around 20 GW lower than projected last year." In this scenario the IEA expected the share of coal in total electricity to drop from 41% now to 33% in 2035. WEO 2011 also included a "Low Nuclear Case (which) examines the implications for global energy balances of a much smaller role for nuclear power. Its effect would be to "increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change."

The New Policies scenario in World Energy Outlook 2012 showed that "several fundamental trends persist: energy demand and CO2 emissions rise even higher; energy market dynamics are increasingly determined by emerging economies; fossil fuels remain the dominant energy sources; and providing universal energy access to the world's poor countries continues to be an elusive goal." WEO 2012 further reduced nuclear capacity projections for 2035, to 580 GWe, about 10% less than that scenario the year before and only 55% more than today. Renewables were projected to "become the world's second-largest source of power generation by 2015," with their share of electricity generation growing from 20% in 2010 (mostly hydro) to 31% by 2035, though this "hinges critically on continued subsidies" which impact electricity prices. The IEA concluded that "taking all new developments and policies into account, the world is still failing to put the global energy system onto a more sustainable path." This is highlighted by a 28% increase in fossil fuel subsidies to $523 billion in 2011 (compared with $409 billion in 2010, and $44 billion in 2010 for renewables. Renewables subsidies are expected to reach $240 billion per year in 2035, for 31% of power).

World Energy Outlook 2013 was very much in line with WEO 2012, and electricity generation increases to 37.1 PWh in 2035.  Electricity prices by 2035 are expected to show significant regional differences, with those for industry in USA ($80/MWh) being a little over half those in the EU and 40% lower than China’s, where network costs eclipse capital cost savings. Japan’s electricity prices for industry, now shown as over $185/MWh, decrease below EU levels to about $145/MWh as fossil fuel imports diminish.

World Energy Outlook 2014 had a special focus on nuclear power, and extended the scope of scenarios to 2040. In its New Policies scenario, installed nuclear capacity growth is 60% through 543 GWe in 2030 and to 624 GWe in 2040 out of a total of 10,700 GWe, with the increase concentrated heavily in China (46% of it), plus India, Korea and Russia (30% of it together) and the USA (16%), countered by a 10% drop in the EU. Despite this, the percentage share of nuclear power in the global power mix increases to only 12%, well below its historic peak. The 450 Scenario gives a cost-effective transition to limiting global warming assuming an effective international agreement in 2015, and this brings about more than doubling nuclear capacity to 862 GWe in 2040, while energy-related CO2 emissions peak before 2020 and then decline. In this scenario, almost all new generating capacity built after 2030 needs to be low-carbon.

"Despite the challenges it currently faces, nuclear power has specific characteristics that underpin the commitment of some countries to maintain it as a future option," it said. "Nuclear plants can contribute to the reliability of the power system where they increase the diversity of power generation technologies in the system. For countries that import energy, it can reduce their dependence on foreign supplies and limit their exposure to fuel price movements in international markets."

Carbon dioxide emissions from coal use level off after 2020 in the New Policies Scenario, though CCS is expected to be negligible before 2030. CO2 emissions from gas grow strongly to 2040.

WEO 2014 expressed concern about subsidies to fossil fuels, “which encourage wasteful consumption” and totalled $548 billion in 2013, over half of this for oil. Ten countries account for almost three-quarters of the world total for fossil-fuel subsidies, five of them in Middle East (notably Iran and Saudi Arabia) or North Africa where much electricity is generated from oil, and where nuclear power plants and even renewables would be competitive, but for those subsidies. The report advocates ensuring “that energy prices reflect their full economic value by introducing market pricing and removing price controls.” Renewables subsides in 2013 are put at $121 billion and rising, $45 billion of this being solar PV. Geographically this is $69 billion for EU and $27 billion in USA. The report was unable to assign a figure for nuclear subsidies, which at present don’t exist. The difficulty of reducing subsidies is discussed.

In June 2015 the IEA’s World Energy Outlook 2015 Special Report on Energy and Climate Change was published, which “has the pragmatic purpose of arming COP21 negotiators with the energy sector material they need to achieve success in Paris in December 2015”. It outlines a strategy to limit global warming to 2°C, but is very much focused on renewables.

The report recommends a series of measures including increasing energy efficiency, reducing the use of inefficient coal-fired power plants, increasing investment in renewables, reducing methane emissions, and phasing out fossil fuels subsidies. Half of the additional emissions reductions in its '450' scenario come from decarbonisation efforts in 
power supply, driven by high carbon price incentives. In this scenario, an additional
 245 GWe of nuclear capacity is built by 2040 compared with a moderate ‘Bridge’ option. The IEA acknowledges that nuclear power is the second-biggest source of low-carbon electricity worldwide after hydropower and that the use of nuclear energy has avoided the release of 56 billion tonnes of CO2 since 1971, equivalent to almost two years of global emissions at current rates. The report suggests that intended nationally determined contributions (INDCs) submitted by countries in advance of COP21 will have trivial effect, and its purpose is clearly to suggest more ambitious emission reduction targets in its ‘Bridge’ scenario.

While the report confirms that nuclear energy needs to play an important role in reducing greenhouse gas emissions, it projects nuclear capacity of only 542 GWe (38% increase) producing 4005 TWh in 2030 in its main ‘Bridge’ scenario, with the share of nuclear energy in power generation increasing to 13% then, compared with about 11% today. Most of the new nuclear plants are expected to be built in countries with price-regulated markets or where government-owned entities build, own and operate the plants, or where governments act to facilitate private investment.

In November 2015, the World Energy Outlook 2015 had a special focus on India. Its central New Policies scenario to 2040 takes into account the policies and implementing measures affecting energy markets that had been adopted as of mid-2015, together with relevant declared policy intentions. Its Current Policies scenario takes into account only policies enacted as of mid-2015, and the 450 scenario depicts a pathway to the 2°C climate goal that can be achieved by the end of the century by fostering technologies that are close to becoming available at commercial scale, and relates to the June report described above. 
In all scenarios, electricity is the fastest-growing form of energy in final use, driven by increasing use in industries, the
 ongoing shift of people to urban centres, and rising living standards. In the New Policies scenario, electricity demand increases 70% by 2040, mostly in non-OECD countries – in China it doubles, in India it more than triples. Installed power generation capacity reaches 10,570 GW in 2040, an increase of some 4,400 GW over the level in 2014 and one-third more than the increase in the previous 25 years. 
Worldwide, installed capacity more than doubles in non-OECD countries, led by China (where it doubles) and India (where it almost quadruples). 

In WEO2015 New Policies, the global power generation mix shifts away from coal, whose share falls from 41% today to 30% in 2040, after holding steady since 1990. The share of low carbon technologies in total generation increases from one-third in 2013 to 47% in 2040, due to the growth of non-hydro renewables and a stable share of nuclear and hydropower. Coal-fired generation increases most in India, more than in China or in the rest of the world combined, but the average efficiency of coal-fired plants climbs to 40%. Global power sector investment totals nearly $20 trillion over 2015-2040, split between 6,700 GW of new power plants ($11.3 trillion, 62% renewables) and 75 million kilometres of transmission lines to deliver the power ($8.4 trillion). 

Nuclear power provides considerably more electricity by 2040 in all scenarios. From 2,478 TWh base in 2013, it increases to 4,606 TWh with New Policies, 3,974 under Current Policies, and 6,243 TWh in the 450 Scenario, then corresponding to 18% of supply. Under New Policies, 147 GWe is added by 2025, and another 218 GWe by 2040, both figures offset by retirements (62 & 86 GWe respectively). That scenario has much greater net addition for coal, gas, wind, solar and hydro, though it shows that the 2020 cost of electricity from non-hydro renewables is more than double that from nuclear, coal or hydro, though the difference diminishes by 2040.

World Energy Outlook 2016 registered very little change from 2015. In the New Policies scenario electricity demand increases by 70% by 2040, mostly in non-OECD countries, but in the 450 scenario it increases by only 43%. However, nuclear capacity more than doubles to 820 GWe, and nuclear generation increases by 140% in the 450 scenario, to 18% of supply.

International Energy Agency: Energy Technology Perspectives

The IEA's Energy Technology Perspectives 2012 study (ETP 2012) took the 450 ppm scenario in WEO 2011 and extended it out to 2050, calling it the 2°C Scenario (2DS). It then goes a step further to see if a zero emissions energy system is possible by 2075. The study made the case that environment and energy development must go hand in hand, and that energy security and climate change mitigation are allies. It pointed out that the share of energy-related investment in public research, development and demonstration (RD&D) has fallen by two-thirds since the 1980s. It went on to focus on how energy policy must address the key issues and on the role of government in formulating policy, finally concluding with recommendations to energy ministers (assuming these recommendations were to be considered at the Rio+20 conference in June 2012).

Improved energy efficiency was seen as the most important source of clean generation, along with huge growth in renewables (wind, solar, hydro and biomass) and an increase in nuclear output to about 8,000 TWh in the 2DS. Most of the remaining fossil generation, contributing 10,000 TWh, was assumed to have CCS installed.

The main tool in achieving carbon dioxide reduction targets for the 2DS was the carbon price, increasing from USD 40/tCO2 in 2020 to USD 150/tCO2 in 2050. This greatly increases the electricity generation costs of CO2-emitting technologies and thereby improves the relative cost-competitiveness of low-carbon power technologies. The report suggested that the only way to achieve a low-carbon world is to price carbon aggressively to force behavioural change; first by reducing demand and second through the implementation of higher cost low carbon technologies. This has a major impact on electricity prices, however, and the only mitigating factor is the relatively low cost of power from nuclear plants allowed to operate on a continuous full-power basis unrestrained by subsidised high-cost intermittent sources having dispatch preference.

Hence the study continued to include a 'high nuclear' sensitivity case for the 2DS scenario. In the 2DS-hiNuc case, nuclear generation is increased to 34% in 2050. Compared with the base 2DS, nuclear replaces fossil power plants with CCS, and renewables. This scenario reflects a world with greater public acceptance of nuclear power. On the technical side, the average construction rate for nuclear power plants in the period 2011 to 2050 rises from 27 GW/yr in the base 2DS to 50 GW/yr. The cumulative investment costs of this case are only USD 200 billion higher than in the base 2DS and are more than offset by costs savings for fossil fuels in the order of USD 2000 billion (10 to 1).

Energy Technology Perspectives 2014 developed the ETP 2012 scenarios. In the 2DS one which is the main focus, some 22 GWe of new nuclear generating capacity must be added annually by 2050. However, the IEA notes that global nuclear capacity "is stagnating at this time" and by 2025 will be 5% to 25% below needed levels, "demonstrating significant uncertainty." It suggests that the high capital and low running costs of nuclear create the need for policies that provide investor certainty.

The IEA estimated that an additional $44 trillion in investment was needed in global electricity systems by 2050. However, it says that this represents only a small portion of global GDP and is offset by over $115 trillion in fuel savings. The new estimate was higher than in ETP 2012, and this increase "partly shows something the IEA has said for some time: the longer we wait, the more expensive it becomes to transform our energy system." It recommended efforts to "moderate electricity demand and decarbonize almost all power generation by 2050." However, in order to attain this, "the decision-making process needs to be revised, abandoning the short-term, siloed attitudes of the past, and embracing a longer-term systems approach that identifies synergies within all sectors of the energy system. A significant change from ETP 2012 is much reduced forecast use of CCS by 2020, and one-fifth less by 2050.

Launching the ETP 2014 report, the IEA executive director said: "Electricity is going to play a defining role in the first half of this century as the energy carrier that increasingly powers economic growth and development. While this offers opportunities, it does not solve our problems; indeed, it creates many new challenges." She added, "We must get it right, but we're on the wrong path at the moment. Growing use of coal globally is overshadowing progress in renewable energy deployment, and the emissions intensity of the electricity system has not changed in 20 years despite some progress in some regions. A radical change of course at the global level is long overdue."

The IEA's Energy Technology Perspectives 2015 developed the earlier scenarios. In the main 2DS scenario, the share of fossil fuels in global primary energy supply drops by almost half – from 80% in 2011 to just over 40% in 2050. Energy efficiency, renewables and CCS make the largest contributions to global emissions reductions under the scenario. Under the 2DS scenario, some 22 GWe of new nuclear generating capacity must be added annually by 2050.

Launching ETP 2015, the IEA said: "A concerted push for clean-energy innovation is the only way the world can meet its climate goals," and that governments should help boost or accelerate this transformation. The shift to clean energy is progressing at levels well short of those needed to limit the global increase in temperature to no more than 2°C. It called for policymakers to step up efforts to support the development and deployment of "new, ground-breaking energy technologies". "Today's annual government spending on energy research and development is estimated to be $17 billion. Tripling this level, as we recommend, requires governments and the private sector to work closely together and shift their focus to low-carbon technologies."

Energy Technology Perspectives 2016 focused on the urban environment, since cities “represent almost two-thirds of global primary energy demand and account for 70% of carbon emissions in the energy sector.” Its 2DS scenario to 2050 concedes a major role to renewables in reducing emissions and much less to nuclear power, while maintaining optimism on CCS.  For electricity, generation is almost completely decarbonised by 2050, achieved with 67% renewables including hydro (30% solar PV and wind), 12% coal and gas with CCS, and 16% nuclear (about 7,000 TWh, from 914 GWe). Electric vehicles will account for 450 TWh. However, it notes that CCS development is languishing and “is not on a trajectory to meet the 2DS target of 540 Mt CO2 being stored per year in 2025,” and in 2015 “only 7.5 Mt/yr (27%) of the captured CO2 is being stored with appropriate monitoring and verification.”

Energy Technology Perspectives 2017 from the IEA analyses various energy sector development paths to 2060 and notes: “In the power sector, renewables and nuclear capacity additions supply the majority of demand growth... Innovative transportation technologies are gaining momentum and are projected to increase electricity demand." Rising living standards will increase demand. “Nuclear power benefits from the stringent carbon constraint in the [Beyond 2 Degrees Scenario], with its generation share increasing to 15% by 2060 and installed capacity compared with today more than doubling to 1,062 GWe by 2060. Of this, 64% is installed in non-OECD countries, with China alone accounting for 28% of global capacity... Achieving this long-term deployment level will require construction rates for new nuclear capacity of 23 GWe per year on average between 2017 and 2060.“ (p295)

International Atomic Energy Agency

The International Atomic Energy Agency (IAEA) in its annual Energy, Electricity and Nuclear Power Estimates for the Period to 2050 published in September 2012 revised downwards its projections for 2030, as it had done the previous year following the Fukushima accident. Its low projection showed a nuclear capacity increase from 370 GWe then to 456 GWe in 2030, the high one gave 740 GWe then, in line with forecast growth in all power generation. For 2050 it tentatively estimated 470 to 1337 GWe respectively. That IAEA publication in September 2013 again revised downward the projections for 2030, to 435 GWe in 2030 for the low projection and 722 GWe for the high one then. For 2050 the figures were 440 and 1113 GWe. The 2014 version again reduces 2030 projections to 401 GWe (low) and 699 GWe for the high projection. For 2050 the figures were 413 and 1092 GWe in 2014. The low figures assume “significant declines in North America, Europe and the OECD Pacific, stagnation in Africa, some growth in Latin America, CIS and ASEAN and substantial expansion in the Middle East and non-OECD Asia” (i.e. including China but excluding Japan and South Korea).

In its International Status and Prospects for Nuclear Power 2017 (to become a four-yearly report with high and low projections), the IAEA’s high case projection has global nuclear generating capacity increasing to 554 GWe by 2030, 717 GWe by 2040 and 874 GWe by 2050. Nuclear's share of global electricity generation would increase from the current level of about 11% to 13.7% by 2050. The largest growth is expected in central and eastern Asia, where capacity increases about 3.5 times by 2050. The IAEA notes: “The decline compared to previous projections [since 2010] is mainly on account of early retirement or lack of interest in extending [the] life of nuclear power plants in some countries, due to the reduced competitiveness of nuclear power in the short run and national nuclear policies in several countries following the accident at the Fukushima Daiichi nuclear power plant in 2011."

The IAEA's low case projection assumes a continuation of current market, technology and resource trends with few changes to policies affecting nuclear power. It is designed to produce "conservative but plausible" estimates. It does not assume that all national targets for nuclear power will be achieved. Under this projection, nuclear capacity decreases from 392 GWe at the end of 2016 to 345 GWe by 2030, a further decrease to 332 GWe by 2040, before recovering to present levels by 2050. “Some 320 GWe of new nuclear power capacity is installed by 2050, making up for the loss caused by retiring reactors, albeit not necessarily in the same regions." Nuclear's share of global electricity generation declines from the current level of about 11% to 6% by 2050.

Climate Change and Nuclear Power

The 2016 edition of this projects growth in nuclear power by 2030 being between 1.9% and 56%, to 390 GWe (low case) up to 598 GWe (high case), compared with up to 68% in the 2015 estimate. "Uncertainty related to energy policy, licence renewals, shutdowns and future constructions account for the wide range," it says. In the short term, "lack of market signals for low-carbon energy," and a slow growth in the global economy are major factors. The need to replace old reactors means "total new capacity constructed will be much greater than the apparent net increase." In the long run, “nuclear power can help lift millions of people out of energy poverty while also combatting climate change."

OECD Nuclear Energy Agency

The OECD's Nuclear Energy Agency published its first Nuclear Energy Outlook in October 2008. Apart from nuclear being virtually carbon-free, it points out that energy security is enhanced due to nuclear fuel's high energy density, which means that transport is less vulnerable and storage of large reserves is easy. In its high scenario, life extensions and plant upratings continue and present plans for new capacity are largely implemented to 2030. After that new build accelerates to bring over 50 GWe on line each year, giving 1400 GWe nuclear capacity in 2050. It identifies factors which would result in that outcome.

In June 2010 this NEO was supplemented by the joint NEA-IEA Nuclear Technology Roadmap, with scenario for cutting energy-related CO2 emissions by 50% by 2050. This would see 1200 GWe of nuclear capacity on line then, providing 24% of electricity (world production having grown from 20,000 TWh in 2007 to 41,000 TWh then). Nuclear power would then be the single largest source of electricity. If constraints on building new nuclear capacity were overcome, nuclear could provide 38% of electricity by 2050, and in this case the power would be 11% cheaper then. The roadmap saw nuclear as a mature technology which required no major technological breakthrough to achieve the projected growth. However, global industrial capacity to construct nuclear power plants will need to double by 2020 if nuclear capacity is to grow in the 2020s and beyond as projected. The Roadmap estimates the investment in nuclear power needed by 2050 to be almost $4000 billion: including $893 billion in China, $883 billion in USA and Canada, $615 billion in OECD Pacific (including Japan & Korea), $389 billion in India, and $330 billion in centrally-planned economies.

The 2015 edition of the joint NEA-IEA Nuclear Technology Roadmap asserts that “current trends in energy supply and use are unsustainable,” and “the fundamental advantages provided by nuclear energy in terms of reduction of GHG emissions, competitiveness of electricity production and security of supply still apply” (from 2010). It puts forward a 2050 carbon-limited energy mix scenario providing about 40,000 TWh in which 930 GWe of nuclear capacity supplies 17% of electricity but plays an important role beyond that. "The contributions of nuclear energy – providing valuable base-load electricity, supplying important ancillary services to the grid and contributing to the security of energy supply – must be fully acknowledged." Governments should "review arrangements in the electricity market so as to... allow nuclear power plants to operate effectively."

"Clearer policies are needed to encourage operators to invest in both long-term operation and new build so as to replace retiring units," said the report. "Governments should ensure price transparency and the stable policies required for investment in large capital-intensive and long-lived base-load power. Policies should support a level playing field for all sources of low-carbon power projects." This is particularly important to OECD countries, where nuclear power is the largest source of low-carbon electricity, providing 18% of their total electricity. Even though the use of electricity grows over the timeframe to 2050, the increase of nuclear power from 377 GWe today would contribute 13% of the emissions reduction needed to limit global warming.

In the near term, small modular reactors "could extend the market for nuclear energy" and even replace coal boilers forced into closure in order to improve air quality. "Governments and industry should work together to accelerate the development of SMR prototypes and the launch of construction projects (about five projects per design) needed to demonstrate the benefits of modular design and factory assembly." In the longer term the IEA wants so-called Generation IV reactor and fuel cycle designs to be ready for deployment in 2030-40.

US Energy Information Administration

The US Energy Information Administration (EIA) has also revised upwards its normally low projections for nuclear in recent editions of its annual International Energy Outlook (IEO). In 2010 it projected 558 GWe nuclear capacity in 2030 and 593 GWe in 2035. The 2030 figure is 53% higher than its 2030 projection published seven years earlier. The reference case for 2035 includes 66 GWe added in China, 23 GWe in India, 25 GWe in Russia and 12 GWe in the USA. It projected 4200 TWh from nuclear in 2030 and 4510 TWh in 2035. In 2013 these projections had increased to 4755 TWh in 2030, 5135 TWh in 2035 and 5492 TWh in 2040 (from 2438 TWh in 2012).

In the EIA International Energy Outlook 2013, nuclear power and renewable energy are forecast to be the world's fastest-growing energy sources from 2010 to 2040, increasing by 2.5% each year, driven by concerns about energy security and greenhouse gas emissions which support the development of new nuclear generating capacity. "Factors underlying the IEO2013 nuclear power projections are mixed. They include the consequences of the March 2011 disaster at Fukushima, planned retirements of nuclear capacity in OECD Europe under current policies, and continued strong growth of nuclear power in non-OECD Asia." (The 2014 edition focuses simply on trends in liquid fuel markets.)

In the EIA International Energy Outlook 2016, nuclear power and renewable energy are forecast to be the world's fastest-growing energy sources from 2012 to 2040. Renewables increase 2.6% per year, from 22% to 29% of total. Nuclear increases by 2.3% per year, from 4% of total to 6%, 2.3 PWh to 4.5 PWh. Generation from non-hydro renewables increases by 5.7% each year. Net nuclear capacity increase is all in non-OECD countries (growth in South Korea is offset by decrease in Canada and Europe), and China accounts for 61% of the capacity growth.

In the EIA International Energy Outlook 2017, renewable energy and natural gas are forecast to be the world’s fastest growing energy sources over 2015-2040. Renewables increase at 2.8%/year, and by 2040 will provide 31% of electricity generation, equal to coal; natural gas increases by 2.1%/year. Generation from nuclear is forecast to increase by 1.5% each year. The net nuclear capacity increase is all in non-OECD countries (growth in South Korea is offset by decreases in both Canada and Europe), and China accounts for 67% of the capacity growth.

Institute of Energy Economics, Japan

The Asia/World Energy Outlook 2016 report by the Institute of Energy Economics, Japan (IEEJ) shows nuclear energy helping Asian countries achieve future economic growth, energy security and environmental protection. In the reference scenario, global installed nuclear generating capacity would increase from 399 GWe in 2014 to 612 GWe in 2040. Over this period, nuclear electricity generation would increase from 2535 TWh to 4357 TWh but its share of total global electricity generation will remain unchanged at around 11.5%.

In the high nuclear scenario, the IEEJ says that nuclear in effect "becomes the base power source" for many emerging countries, such as Asian and Middle Eastern countries. This scenario assumes that nuclear energy "will benefit from lower level costs, and that nuclear technology transfer will be properly made from developed countries of nuclear technology, such as Japan, to emerging countries." Under this scenario, nuclear generating capacity in Asia would increase about seven-fold between 2014 and 2040. The IEEJ notes: "The development of nuclear in the future is significantly uncertain. It is not only due to countries' or regions' circumstances of energy, economy, and development level of social infrastructure, but also a matter of international relations."

World Energy Council

In November 2011 the World Energy Council (WEC) published a report: Policies for the future: 2011 Assessment of country energy and climate policies, which ranked country performance according to an energy sustainability index, meaning how well each country performs on "three pillars" of energy policy – energy security, social equity, and environmental impact mitigation (particularly low carbon emissions), or simply environmental sustainability. The five countries with the "most coherent and robust" energy policies included large shares of nuclear energy in their electricity fuel mix. The best performers, according to the report, are: Switzerland (40% nuclear), Sweden (40% nuclear), France (75% nuclear), Germany (30% nuclear prior to reactor shutdowns earlier 2011), and Canada (15% nuclear). The report said that countries wanting to reduce reliance on nuclear power must work out how to do so without compromising energy sustainability. In Germany this would be a particular challenge without increasing the reliance on carbon-based power generation "since the renewable infrastructure currently does not have the capability to do so."

The 2013 version of this WEC World Energy Trilemma report gave top rating to Switzerland, Denmark, Sweden, the United Kingdom and Spain as being the only countries that historically demonstrate their ability to manage the trade-offs among the three competing energy policy dimensions coherently. These all have, or depend upon, a high level of nuclear contribution. Germany had notably dropped down the list on energy security and sustainability criteria, as had France on energy security. Canada plunged from 2011 due to environmental sustainability, though at top on the other two. In the 2014 edition, WEC gave top honours to Switzerland, Sweden and Norway. Germany, Spain and Japan dropped down the rankings.

In October 2016, WEC published new scenarios developed in collaboration with Accenture Strategy and the Paul Scherrer Institute as The Grand Transition. WEC notes that while global energy demand has more than doubled since 1970, the rate of growth for primary energy will now reduce and per capita demand will peak before 2030. However, electricity demand will double by 2060. Furthermore, "limiting global warming to no more than a 2°C increase will require an exceptional and enduring effort, far beyond already pledged commitments, and with very high carbon prices." WEC says global cooperation, sustainable economic growth, and technology innovation are needed to balance the energy trilemma: energy security, energy equity and environmental sustainability. Under its main scenario, where "'intelligent' and sustainable" economic growth models emerge as the world seeks a low-carbon future, nuclear accounts for 17% of electricity generation, or 7617 TWh, in 2060, from global installed capacity of 989 GWe. More than half of nuclear capacity additions throughout the period are in China, reaching 158 GWe in 2030 and 344 GWe in 2060. India follows China, with nuclear capacity reaching 137 GWe in 2060.

WEC’s World Energy Resources 2016 report the same month showed that total global renewable energy generating capacity had almost doubled over the past decade, from 1037 GWe in 2006 to 1985 GWe by the end of 2015 (61% of this hydro, 22% wind), and that renewable sources including hydro now account for 23% of total 24,098 TWh generation. The report also said: "The outlook for nuclear up to 2035 will depend largely on the success of the industry in constructing plants to agreed budgets and with predictable construction periods. It is evident in a number of countries that median construction times are stable.” Beyond 2035, the report expects fast reactors to make "an increasing contribution in a number of countries by building on the experience of operating these reactors in Russia and with developing the Generation IV prototypes, such as the Astrid reactor being designed in France.”

European Commission

In December 2011 the European Commission (EC) published its Energy 2050 Roadmap, a policy paper. This was very positive regarding nuclear power and said that nuclear energy can make "a significant contribution to the energy transformation process" and is "a key source of low-carbon electricity generation" that will keep system costs and electricity prices lower. "As a large scale low-carbon option, nuclear energy will remain in the EU power generation mix." The paper analysed five possible scenarios leading to the EU low-carbon energy economy goal by 2050 (80% reduction of CO2 emissions), based on energy efficiency, renewables, nuclear power and carbon capture and storage (CCS). All scenarios show electricity will have to play a much greater role than now, almost doubling its share in final energy demand to 36%-39% in 2050. The EC high-efficiency scenario would reduce energy demand by 41% by 2050 (compared with 2005); the diversified supply technologies scenario would have a combination of high carbon prices, nuclear energy and introduction of CCS technologies; a high-renewables scenario suggests they might supply 75% of total energy supply by 2050; a "delayed CCS" scenario has nuclear power would playing a major role; and a low-nuclear power scenario had coal plants with CCS providing 32% of total energy (ie 82-89% of EU electricity). The highest percentage of nuclear energy would be in the delayed CCS and diversified supply technologies scenarios, in which it would account for 18% and 15% shares of primary energy supply respectively, ie 38-50% of EU electricity. Those scenarios also had the lowest total energy costs.


In January 2014 BP published its Energy Outlook 2035, which showed growth in primary energy demand to then at 2.0% per year to 2020 then 1.2% pa, but electricity demand growth is much higher and by 2035 accounts for 46% of primary energy. Nuclear energy output is expected to rise to 2035 at around 1.9% a year. China, India and Russia will together account for 96% of the global growth in nuclear power, while nuclear output in the USA and EU declines due to expected plant closures. Renewables are expected to continue to be the fastest growing class of energy, gaining market share from a small base as they rise at an average of 6.4% a year to 2035. Renewables' share of global electricity production is expected to grow from 5% to 14% by 2035. Including biofuels, renewables are expected to have a higher share of primary energy than nuclear by 2025.

Electricite de France (EdF) in about 2008 published forecast world figures for the period to 2020. These show 140 GWe of new capacity being built and 10 GWe decommissioned to give 480 GWe in 2020. Of the 140 GWe new build, almost 30% is in China, 15% is in India and 15% other Asia. Europe, Americas and Russia have about 12% each.

A World Nuclear Association report early in 2013, Inside the Black Box – Exploring the Assumptions within Nuclear Power Forecasting, examines several scenarios for electricity and for nuclear power supply and their basis. A 2014 comparison among several sets of projections from the IEA (WEO 2013) and EIA (Outlook 2013) showed 2035 nuclear capacity figures ranging from 527 to 792 GWe, compared with 381 GWe in 2010 base year. The World Energy Council’s higher scenario was 751 GWe. Exxon Mobil and Shell projections for 2040 were comparable with those from EIA. On the basis of these, a doubling of nuclear capacity by 2040 emerges as being likely.

Generation options

In electricity demand, the need for low-cost continuous, reliable supply can be distinguished from peak demand occurring over a few hours daily and able to command higher prices. Supply needs to match demand instantly and reliably over time. There are number of characteristics of nuclear power which make it particularly valuable apart from its actual generation cost per unit – MWh or kWh. Fuel is a low proportion of power cost, giving power price stability, its fuel is on site (not depending on continuous delivery), it is dispatchable on demand, it has fairly quick ramp-up, it contributes to clean air and low-CO2 objectives, it gives good voltage support for grid stability. These attributes are mostly not monetised in merchant markets, but have great value which is increasingly recognised where dependence on intermittent sources has grown, and governments address long-term reliability and security of supply.

The renewable energy sources for electricity constitute a diverse group, from wind, solar, tidal and wave energy to hydro, geothermal and biomass-based power generation. Apart from hydro power in the few places where it is very plentiful, none of these is suitable, intrinsically or economically, for large-scale power generation where continuous, reliable supply is needed.

Growing use will however be made of the renewable energy sources in the years ahead, although their role is limited by their intermittent nature. Their economic attractiveness is still an issue also. Renewables will have most appeal where demand is for small-scale, intermittent supply of electricity. In the OECD about 8% of electricity was from renewables other than hydro in 2013, and the world figure was 5.7%.

Load curve

This diagram shows that much of the electricity demand is in fact for continuous 24/7 supply (base-load), while some is for a lesser amount of predictable supply for about three quarters of the day, and less still for variable peak demand up to half of the time.

Apart from nuclear power the world relies almost entirely on fossil fuels, especially coal, to meet demand for base-load electricity production. Most of the demand is for continuous, reliable supply on a large scale and there is little scope for changing this.

Natural gas is increasingly used as fuel for electricity generation in many countries, but transport over long distances and storage present some challenges. Much storage is underground, in depleted oilfields, especially in the USA. However, this can be dangerous. In 2015 the Aliso Canyon storage field in California leaked for some months at about 66 tonnes of methane per hour, causing widespread evacuation and neutralising the state’s efforts to curb CO2 emissions (methane having 25 times the global warming potential).

There is much made of comparisons with renewables. Aside from the obvious intermittency and non-dispatchability of renewables, the following comparisons of plant materials is interesting. Per MWe of installed capacity (disregarding capacity factors):
Solar PV: 40 t steel, 19 t aluminium, 76 t concrete, 85 t glass, 13 t silicon.
Wind: 118 t steel, 298 t concrete
Nuclear (1970s plant): 36-40 t steel, 75-90 m3 concrete.*

* Wind data from Vestas, Jan 2011, Life Cycle Assessment of electricity production from V112 wind turbine; solar PV: A Review of Risks in the Solar Electric Life-Cycle, by V.M. Fthenakis and H.C. Kim of Brookhaven National Laboratory; Per F. Peterson, Haihua Zhao, and Robert Petroski, "Metal And Concrete Inputs For Several Nuclear Power Plants," University of California, Berkeley.

Implications of Electric Vehicles

Future widespread use of electric vehicles, both pure electric and plug-in hybrids, will increase electricity demand modestly – perhaps up to 15% in terms of kilowatt-hours. But this increase will mostly come overnight, in off-peak demand, so will not much increase the system's peak capacity requirement in gigawatts. Overnight charging of vehicles will however greatly increase the proportion of that system capacity to be covered by base-load power generation – either nuclear or coal. In a typical system this might increase from about 50-60% to 70-80% of the total, as shown in the Figures below.

This then has significant implications for the cost of electricity. Base-load power is generated much more cheaply than intermediate- and peak-load power, so the average cost of electricity will be lower than with the present pattern of use. And any such major increase in base-load capacity requirement will have a major upside potential for nuclear power if there are constraints on carbon emissions. So potentially the whole power supply gets a little cheaper and cleaner, and many fossil fuel emissions from road transport are avoided at the same time.

Load curve 2

Load curve (3)

Drivers for increased nuclear capacity

The first generation of nuclear plants were justified by the need to alleviate urban smog caused by coal-fired power plants. Nuclear was also seen as an economic source of base-load electricity which reduced dependence on overseas imports of fossil fuels. Today's drivers for nuclear build have evolved:

Increasing energy demand

Global population growth in combination with industrial development will lead to a doubling of electricity consumption by 2030. Besides this incremental growth, there will be a need to renew a lot of generating stock in the USA and the EU over the same period. An increasing shortage of fresh water calls for energy-intensive desalination plants, and in the longer term hydrogen production for transport purposes will need large amounts of electricity and/or high temperature heat. See first section above for recent projections.

Climate change

Increased awareness of the dangers and effects of global warming and climate change has led decision makers, media and the public to realize that the use of fossil fuels must be reduced and replaced by low-emission sources of energy, such as nuclear power, the only readily available large-scale alternative to fossil fuels for production of continuous, reliable supply of electricity.

Security of Supply

A major topic on many political agendas is security of supply, as countries realize how vulnerable they are to interrupted deliveries of oil and gas. The abundance of naturally occurring uranium makes nuclear power attractive from an energy security standpoint.


Increasing fossil fuel prices have greatly improved the economics of nuclear power for electricity now. Several studies show that nuclear energy is the most cost-effective of the available base-load technologies. In addition, as carbon emission reductions are encouraged through various forms of government incentives and trading schemes, the economic benefits of nuclear power will increase further.

Insurance against future price exposure

A longer-term advantage of uranium over fossil fuels is the low impact that increased fuel prices will have on the final electricity production costs, since a large proportion of those costs is in the capital cost of the plant. This insensitivity to fuel price fluctuations offers a way to stabilize power prices in deregulated markets.

As the nuclear industry is moving away from small national programmes towards global cooperative schemes, serial production of new plants will drive construction costs down and further increase the competitiveness of nuclear energy.

In practice, is a rapid expansion of nuclear power capacity possible?

Most reactors today are built in under five years (first concrete to first power), with four years being state of the art and three years being the aim with prefabrication. Several years are required for preliminary approvals before construction.

It is noteworthy that in the 1980s, 218 power reactors started up, an average of one every 17 days. These included 47 in USA, 42 in France and 18 in Japan. The average power was 923.5 MWe. So it is not hard to imagine a similar number being commissioned in a decade after about 2015. But with China and India getting up to speed with nuclear energy and a world energy demand double the 1980 level in 2015, a realistic estimate of what is possible might be the equivalent of one 1000 MWe unit worldwide every five days.

A relevant historical benchmark is that from 1941 to 1945, 18 US shipyards built over 2700 Liberty Ships. These were standardised 10,800 dwt cargo ships of a very basic British design but they became symbolic of US industrial wartime productivity and were vital to the war effort. Average construction time was 42 days in the shipyard, often using prefabricated modules. In 1943, three were being completed every day. They were 135 metres long and could carry 9100 tonnes of cargo.

See also the paper in this series: Heavy Manufacturing of Power Plants.

Clean Air and Greenhouse Gases

On a global scale nuclear power currently reduces carbon dioxide emissions by some 2.5 billion tonnes per year (relative to the main alternative of coal-fired generation, about 2 billion tonnes relative to the present fuel mix). Carbon dioxide accounts for half of the human-contributed portion of the global warming effect of the atmosphere.

The UN Intergovernmental Panel on Climate Change (IPCC) has comprehensively reviewed global warming and has reached a consensus that the phenomenon is real and does pose a significant environmental threat during the next century if fossil fuel use continues even at present global levels. See also Climate Change – science paper.

The 2007 IPCC report on mitigation of climate change says that the most cost-effective option for restricting the temperature rise to under 3°C will require an increase in non-carbon electricity generation from 34% (nuclear plus hydro) then to 48-53% by 2030, along with other measures. With a doubling of overall electricity demand by then, and a carbon emission cost of US$ 50 per tonne of CO2, nuclear's share of electricity generation was projected by IPCC to grow from 16% now to 18% of the increased demand (ie 2650 TWh to some 6000 TWh/yr), representing more than a doubling of the current nuclear output by 2030. The report projected other non-carbon sources apart from hydro contributing some 12-17% of global electricity generation by 2030. This is considerably more than subsequent World Energy Outlook projections for 2030 reported above.

Nuclear power has a key role to play in reducing greenhouse gases. Every 22 tonnes of uranium (26 t U3O8) used saves one million tonnes of carbon dioxide relative to coal.

Of more immediate relevance is clean air, and the health benefits of low pollution levels. A World Health Organisation (WHO) study published in 2011 showed that some 1.34 million people each year die prematurely due to PM10 particles – those less than 10 microns (μm) – in outdoor air. Outdoor, PM10 particles mostly originate in coal-fired power stations and motor vehicles, and indoors, residential wood and coal burning for space heating is an important contributor, especially in rural areas during colder months.

WHO studied publicly-available air quality data from 1081 cities across 91 countries, including capital cities and those with populations of more than 100,000 people. The data used are based on measurements taken from 2003 to 2010, with most being reported for the period 2008-09. The WHO air quality guideline for PM10 is 20 micrograms per cubic metre (μg/m3) as an annual average. However, eleven cities exceeded 200 μg/m3 average, eg UlaanBaatar at 279 μg/m3, whereas most of the 490 cities below the guideline level were in North America.

In August 2015 the Global Nexus Initiative (GNI) was set up by the US Nuclear Energy Institute (NEI) and the Partnership for Global Security. It aims to explore the links between climate change, nuclear energy and global security challenges through a working group of 17 multidisciplinary policy experts from the non-governmental, academic and private sectors in Denmark, France, Japan, Sweden, the United Arab Emirates and the USA. The group will convene for a series of meetings and workshops, through which it aims to produce policy memoranda identifying the challenges and offering recommendations. These will feed into a cumulative report at the end of the two-year project. GNI points out that climate change, energy security and global security are all issues that cut across national borders, have significant economic and social impacts, and require input from the full spectrum of stakeholders. This means policies must be coordinated at national, regional and global levels.

Use of Natural Resources

Carbon and hydrocarbon resources have many other uses that generating power on a large scale. Coal and other fossil fuels are required in much larger quantities than uranium to produce the equivalent amount of electricity – nuclear power is very energy-dense, an extremely concentrated form of energy – see Table below. Nuclear power already has substantially reduced the use of fossil fuels.

Energy conversion: the heat values of various fuels

Fuel Heat value
Hydrogen (H2) 121 MJ/kg
Methane (CH4) 50 MJ/kg
Methanol (CH3OH) 22.7 MJ/kg
  18 MJ/L
Dimethyl ether, DME (CH3OCH3) 29 MJ/kg
  19 MJ/L
Petrol/gasoline 44 MJ/kg
  32 MJ/L
Diesel fuel 45 MJ/kg
  39 MJ/L
Crude oil 42-44 MJ/kg
  37-39 MJ/L
Liquefied Petroleum Gas (LPG) 49 MJ/kg
Natural gas (UK, USA, Canada, Australia) 37-39 MJ/m3
Natural gas (Russia) 34 MJ/m3
Natural gas as LNG (Australia) 55 MJ/kg
Hard black coal (IEA definition) >23.9 MJ/kg
Sub-bituminous coal (IEA definition) 17.4-23.9 MJ/kg
Lignite/brown coal (IEA definition) <17.4 MJ/kg
Lignite (Australia, electricity) 9.8 MJ/kg
Firewood (dry) 16 MJ/kg
Natural uranium, in LWR (normal reactor) 500 GJ/kg
Natural uranium, in LWR with U & Pu recycle 650 GJ/kg
Natural uranium, in FNR 28,000 GJ/kg
Uranium enriched to 3.5%, in LWR 3900 GJ/kg

Uranium figures are based on 45,000 MWd/t burn-up of 3.5% enriched U in LWR
MJ = l06 Joule, GJ = 109 J; % carbon is by mass; mass CO2 = 3.667 mass C
MJ to kWh @ 33% efficiency: x 0.0926
One tonne of oil equivalent (toe) is equal to 41.868 GJ 
For hydrogen and methane, Lower Heating Value is given (net of latent heat of vapourisation for water)
Sources: OECD International Energy Agency Electricity Information 2016, for coal; Australian Energy Consumption and Production, historical trends and projections, ABARE Research Report 1999.

A further aspect of natural resource use in some places is regarding fresh water. Coal-fired plants are often built on coalfields for logistical reasons, and then cooled with fresh water using evaporative cooling towers. These use a lot of water. With nuclear plants, there is no similar siting consideration and they may more readily be put on the coastline, using seawater for cooling without evaporation. In Australia, a dry continent, a move from coal-fired to nuclear power could save enough fresh water to supply a city of four million people.

See also Sustainable Energy in this series.

You may also be interested in